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Abstract – This research presents a novel methodology for evaluating the efficiency of satellite-based edge computing, 
focusing on network topology dynamics, computational resource allocation, and AI-driven inference performance. In our 
study, a low Earth orbit (LEO) satellite constellation model is developed using Keplerian orbital mechanics, with inter-
satellite and ground-satellite connectivity governed by probabilistic link availability. Computational task offloading is 
formulated as an optimization problem that minimizes total execution latency, incorporating local processing time, 
transmission delay, and resource constraints. AI inference performance is analyzed using a convolutional neural network 
(CNN) deployed for real-time image classification, with federated learning updates exchanged asynchronously across 
satellites. Simulation results demonstrate that optimal task allocation reduces execution latency by 47.3% compared to 
conventional cloud-based processing, while maintaining a stable inference accuracy of 91.6% under dynamic network 
conditions. Connectivity stability analysis reveals that link availability fluctuates due to satellite mobility, with an average 
link duration of 18.6 seconds, impacting federated learning synchronization. The study further shows that AI inference 
latency scales non-linearly with resource-constrained satellites, with a 35.2% increase in processing delay observed under 
high computational loads.  

Keywords – Artificial Intelligence Computation Offloading, Satellite Internet of Things Networks, Vehicular Cloud 
Resource Optimization, Edge Computing in Remote Sensing, Distributed Machine Learning in Satellite Communications. 

I. INTRODUCTION 

In the existing satellite IoT structure, terminals transmit the collected information and data to the grounded cloud system via 
satellites for further processing. Nonetheless, cloud computing systems are often both physically and conceptually remote 
from the terminal. This leads to significant communication delay between the cloud and the interface. With the advent of the 
Big Data era, the volume of data has surged dramatically. The 2017 NVI research by Cisco indicates that global IoT dataset 
was 2 EB per month in 2016 and 14 EB per month by 2021, reflecting an average yearly increase of 49% [1].  The growing 
volume of data exerts significant pressure on network connectivity. The circumstances will deteriorate further due to the 
constraints of orbital positions and onboard resources of satellites. The notion of edge computing has been employed in 
satellite IoTs platforms to mitigate these concerns. The fundamental premise is to expand cloud system functionalities to the 
periphery of networks. It facilitates processing of data through a communal pool of computer resources, hence reducing the 
data volume transmitted to the cloud for expedited evaluation outcomes [2]. The integration offers three primary advantages: 
(1) a decrease in communication data volume and a reduction in bandwidth requirements on network links; (2) diminished 
latency for applications and services; and (3) enhanced transfer for geographically-disseminated applications and devices.  

The appropriate distribution of computational and communication assets in satellite IoT devices is a burgeoning research 

area replete with unresolved difficulties. Owing to the fast motion of LEO satellites, a user device could often alternate 

between the satellites it accesses. Ensuring service continuity is a critical concern when a user device transitions between 



Volume 1, 2025, Pages 01-12                                                             Journal of Computer and Communication Networks 

| Regular Article | Open Access  

 

2 

 

satellite MEC platforms. The relocation of services is an efficacious option. During the service movement, the original 

platform transmits the application and information to the new platform.  The crucial aspect of service migration is to ascertain 

the optimal timing and location for the transition.  The optimal practice for migration time is premigration, when the 

migration ends as the user device reaches the new service region. The migration targeting satellite MEC platform may be 

anticipated due to the frequent alterations in satellite network topology. Should the forecast for the target satellite MEC 

platform prove true, the migration will ensure service continuity and minimize communication latency between the user 

interface and the MEC platform [3]. Nonetheless, if the forecast is erroneous, the user experience will be profoundly affected, 

perhaps leading to service disruption. 

Due to a satellite's limited coverage area in satellite IoT systems, traffic demands are uneven, influenced by population 

density that is high in urban regions, low in rural areas, and almost nonexistent overseas, which constitute around 70 percent 

of the Earth's surface. As satellites traverse their orbits, the traffic received from terrestrial nodes fluctuates continually 

according to user density within the footprint region, leading to an uneven allocation of communication and computation 

resources among various satellites. Consequently, addressing the imbalance in the usage of communication and computation 

resources to enhance network efficiency, particularly regarding task execution latency, is a critical issue for satellite IoT 

systems [4]. The dynamic scheduling method is anticipated to equilibrate onboard resources across several satellites 

according to the monitoring of service needs. The advent of inter-satellite communications has made satellite clustering a 

novel trend in satellite networking development.  

Satellites endowed with computational and storage capabilities constitute the satellite edge computing cluster, facilitating 

the movement of computing resources to the network's periphery. Inter-satellite connectivity and mobility edge computing 

will enhance the efficiency and intelligence of satellite edge computing clusters. We focus on optimizing artificial 

intelligence computation offloading within satellite Internet of Things (IoT) networks by leveraging vehicular cloud resource 

allocation and edge computing strategies. Our research explores how distributed machine learning can enhance satellite 

communications, improve data processing efficiency, and reduce latency in remote sensing applications. By integrating 

advanced resource management techniques, we aim to enhance the scalability and reliability of satellite-based IoT systems, 

addressing key challenges in connectivity, computational load balancing, and real-time decision-making.  

The remaining sections of this research paper have been organized in the following manner: Section II reviews various 

related works on (i) satellite constellation and network topology design, (ii) edge computing in space-based networks, (iii) 

machine learning in satellite IoT, and (iv) network simulation tools for satellite IoT evaluation. Section III describes the 

research design and methods highlighting (i) network topology and connectivity model, (ii) edge computing resource 

allocation model, (iii) AI model training and inference performance, and (iv) simulation and performance metrics. Section 

IV discusses the findings of the study describing (i) satellite coverage performance and IoT connectivity, and (ii) satellite 

IoTs edge intelligent computing framework performance. Lastly, Section V concludes the study demonstrating the efficiency 

of optimized AI computation offloading in satellite IoT networks. 

 

II. BACKGROUND STUDY AND RELATED WORKS 

Satellite Constellation and Network Topology Design 

As seen in [5], satellite networking began with the deployment of individual satellites in geostationary orbits, where uplink 

signals were increased, frequency-based, and disseminated across extensive terrestrial regions using basic transparent 'bent-

pipe' repeaters aboard the spacecraft. The allocation of broadcasting physical and data-linked layer volume resulted in the 

development of more intricate MAC (Media-Access Control) methods to optimize volume utilization, particularly with 

slotted Aloha and its variations for VSAT (Very Small Aperture Terminal) systems. The implementation of numerous 

spotbeams in a single satellite, as seen in Fig 1, necessitated MAC and on-board switching, with capacity management 

assigned via a LLC (Logical Link Control) and circuits sublayer. The concept of using satellite constellations for wireless 

communication services throughout a significant portion of the Earth originated from Arthur C. Clarke's 1945 publication in 

Wireless World [6].  

Vishwakarma, Chauhan, and Aasma [7] describe a network of 3 stationary orbiting satellites to ensure comprehensive 

coverage along the Earth's equator, using GEO (geostationary earth orbit). The concept of a 'stationary orbit' has been 

recognized since the 16th century. Constellations of MEO (medium-earth orbiting)  and LEO (low-earth orbiting) satellites, 

using orbits under the stationary orbit, have been suggested, along with constellations in highly elliptical orbits (HEO). These 

provide comprehensive global or specific coverage of the Earth. Constellations provide more reuse of restricted ground-

space communication frequencies, hence enhancing total network capacity via this frequency reutilization. The reduction in 

propagation delay to LEO, MEO, and some HEO relative to GEO is advantageous for delay budgets, although may be 

inconsequential for several applications. Nonetheless, these non-GEO constellations need a greater number of satellites to 

provide uninterrupted coverage of specific regions on Earth. Their mobility in relation to the Earth's surface necessitates the 

control of handover and escalates system complexity.Fig 1 shows  Differentiating Between Spotbeams and Satellite 

Footprints.
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(a). Low total capacity, shared footprint region employing a 

single antenna (unprojected map). 

 
(b). Increased footprint capacity and frequency reuse are 

achieved via the deployment of eight levels of unshaped 

spotbeams.  The point + is the subsatellite's nadir.

Fig 1. Differentiating Between Spotbeams and Satellite Footprints 

Edge Computing In Space-Based Networks 

According to Hui et al. [8], there has been an unparalleled trend towards space-oriented Internet services and the deployment 

of LEO satellites’ mega-constellations by high-tech companies. Fraire, Iova, and Valois [9] provide an innovative space-

terrestrial IoT architecture (STEREO), shown in Fig 2. This structure delineates two principal deployment scenarios for the 

implementation of SIoT: Indirect-to-Satellite IoT (ItS-IoT) and Direct-to-Satellite IoT (DtS-IoT). These implementation 

tactics are intended to enhance one another, creating an interlinked global structure. The selection between these 

methodologies is contingent upon the geographical region and the particular application specifications. 

 

 
Fig 2. Stereo Structure Illustrating Dts-Iot and Its-Iot Methodologies 

 

 According to Mahboob and Liu [10], a pressing need exists to standardize the satellite sector in relation to terrestrial 

infrastructure, which will be crucial for the advancement of 6G. The 6G NTN aims to expand upon the legacy 5G NTN 

applications in unserved and underserved regions, as well as aviation and marine sectors, by including a wide array of new 

use cases, including the mass downloading of Earth Observation information. Delay-sensitive Earth Observation applications 

are of considerable importance, including real-time monitoring and emergency communications.  

 
Fig 3. An illustration of the concurrent enhancement of computational and communicative resources for two tasks 

produced by LEO satellite. For extensive routes (yellow), doing the job at the periphery reduces energy usage. For shorter 

journeys (green), cloud computing is favored. 
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Present implementations do not transmit data over inter-satellite connections (ISL), but instead utilize a store-forward 

technique until the satellite achieves line of sight (LoS) with a ground station (GS). This is a disadvantage for delay-sensitive 

services, since obtaining sight of a GS might need up to 1 day.  Fig 3 illustrates the outcome of the optimization for two jobs 

produced by distinct satellites.   

Machine Learning In Satellite Iot 

As described by Gupta et al. [11], ML falls under the umbrella of AI that utilizes historical data to enable computers to learn.  

Machine learning identifies correlations in historical data and utilizes that information to enhance decision-making. In 

contrast to conventional AI, which employs various methods to replicate human intellect, machine learning concentrates on 

techniques, which enable the network to be trained and adapt. Over the past few decades, the enhancement of computational 

capabilities has augmented the appeal of machine learning, evident in its use across many fields, including education, finance, 

and healthcare, among others. The rise of Social Internet of Things (SIoT) sector ML applications, particularly in 

accessibility methods, networks, and resources, is evident due to these factors. A diverse array of machine learning 

approaches exists, and the selection of the appropriate method mostly depends on the characteristics and kind of data. For 

instance, assume the dataset consists of photos. The application should likely use Convolutional Neural Networks (CNNs), 

since their characteristics enable superior detection of picture patterns compared to other methods. This section succinctly 

presents ideas and various machine learning approaches used in the SIoT area, outlining their primary benefits, features, and 

limits.  

 Ciobotaru et al. [12] not only provide classic approaches but also offer contemporary developing machine learning 

methodologies, including Transformers, Federated Learning, and Computer Vision. Fig 4 illustrates the categorization of 

several machine learning types applicable in the SIoT sector. Every machine learning approach shown in this review has the 

ability to resolve several issues. Various neural networks are adaptable and may be used for applications like sequence data 

processing, image recognition, and classification. Advanced designs using neural networks, like transformers, have earlier 

been designed to attain superior performance in intricate tasks. Nevertheless, these sophisticated approaches sometimes need 

considerable computational resources that may be a constraint in certain situations. Transfer learning has arisen as an 

effective strategy to address this difficulty by enabling pre-trained systems to be tailored for novel tasks with markedly 

reduced processing requirements. Moreover, reinforcement learning is especially adept at addressing issues in dynamic 

environments that may evolve over time, a trait that makes it very appealing for smart IoT applications. The amalgamation 

of neural networks with reinforcement learning has significantly improved these models' capacity to learn and adapt in many 

situations, resulting in more efficient and resilient solutions. 

 

 
Fig 4. Classification Of Machine Learning Methods Discussed in the Survey 

Network Simulation Tools for Satellite Iot Evaluation 

There is a deficiency of effective assessment and simulation tools for satellite IoT networks, with just minimal research 

addressing this issue [13], [14]. Network modeling is a crucial phase in the progression from emulation/simulation to field 

testing and the implementation of real-world STIN systems, as seen in Fig 5. 
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The modeling of satellite networks originated in the early 2000s. BISANTE [15] refers to a traffic assessment instrument 

developed for broadband satellite architecture, intended to analyze the system attributes of GEO and LEO constellation 

structures. ASIMUT [16] was created as a simulator for media satellite telecommunications systems, with reusable 

components for various situations. Packet-level and general-purpose simulators, like QualNet, OMNeT++, ns-2, and ns-3, 

are employed for satellite networks. Nonetheless, they remain deficient in some satellite node and connection modules, 

particularly those capable of simulating authentic traffic patterns. Despite the existence of conventional solutions, designing 

a cohesive network simulator for STINs remains very complex due to varying network properties, diverse protocols, and 

satellite movement patterns.  

 

 
Fig 5. The Phases from Emulation/Simulation to Field Testing and Actual System Implementation 

 

As argued by Xie et al. [17], the fast expansion of satellite Internet LEO mega-constellations presents additional problems 

and needs for STIN simulation, including realism, scalability, extensibility, real-time capabilities, and agility. Increased 

memory and computational resources are necessary to model a Low Earth Orbit (LEO) image constellation with handover 

operations and frequent reconnection. The varied network standards and protocols across terrestrial and satellite networks 

provide more obstacles for network modeling. The significant network topology dynamics must not be overlooked. 

 

III. RESEARCH DESIGN AND METHODS 

The evaluation of Satellite IoT edge computing architectures requires a systematic approach that integrates network 

modeling, computing resource allocation, and AI-based inference analysis. This study adopts a simulation-driven 

methodology to assess the efficiency of edge intelligence in satellite networks, particularly focusing on connectivity, data 

processing latency, and AI model performance. The methodology consists of three primary stages: network topology design, 

edge computing framework formulation, and AI inference evaluation under dynamic satellite conditions. 

Network Topology and Connectivity Model 

The network is modeled as a LEO satellite constellation with inter-satellite and ground-satellite links. Given a set of satellites 

𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑛} moving in predefined orbital planes, their positions at any time 𝑡 are determined using Keplerian orbital 

mechanics, where the position vector 𝑟𝑠(𝑡) of satellite 𝑠𝑖 is given by Eq. (1).  

 

 𝑟𝑠(𝑡) = 𝑎(1 − 𝑒2) (1 + e cos 𝜃)⁄ ∙ 𝑟̂ (1) 

 

where 𝑎 is the semi-major axis, 𝑒 is the orbital eccentricity, 𝜃 is the true anomaly, and 𝑟̂ is the unit radial vector. The 

network connectivity is characterized by the link probability between any two satellites, which is modeled as a function of 

their relative distances and the beam coverage footprint 𝜙𝑐, expressed as Eq. (2). 

 

𝑃𝑙𝑖𝑛𝑘(𝑠𝑖 , 𝑠𝑗) = {
1, if 𝑑(𝑠𝑖 , 𝑠𝑗) ≤ 𝑑𝑚𝑎𝑥  and 𝑎(𝑠𝑖 , 𝑠𝑗) ≤ ∅𝑐 ,

0, otherwise
                                                (2) 

 

Here, 𝑑(𝑠𝑖 , 𝑠𝑗) is the Euclidean distance between two satellites, 𝑑𝑚𝑎𝑥  is the maximum communication range, and 

𝛼(𝑠𝑖 , 𝑠𝑗) represents the angular separation between their communication beams. The network topology dynamically evolves 

as satellites move, and connectivity disruptions due to orbital shifts are modeled using a time-dependent stochastic process. 

Edge Computing Resource Allocation Model 

Each satellite in the constellation is equipped with limited computing resources, defined in terms of CPU cycles per second 

𝐶𝑠, memory 𝑀𝑠, and power budget 𝑃𝑠. The computational task offloading decision is formulated as an optimization problem, 
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where the objective is to minimize the total execution delay while meeting resource limits. Given a task 𝑇𝑘 with 

computational demand 𝐷𝑘 (measured in CPU cycles), the processing delay on a satellite 𝑠𝑖 is given by Eq. (3).  

 

𝑇𝑝𝑟𝑜𝑐(𝑠𝑖) =
𝐷𝑘

𝐶𝑠

                                                                                            (3) 

 

If offloading to another satellite 𝑠𝑗 is necessary, the total latency includes transmission delay 𝑇𝑐𝑜𝑚𝑚  and queuing delay 

𝑇𝑞𝑢𝑒𝑢𝑒, leading to the total delay function in Eq. (4).  

 

𝑇𝑡𝑜𝑡𝑎𝑙(𝑠𝑖 , 𝑠𝑗) = 𝑇𝑐𝑜𝑚𝑚(𝑠𝑖 , 𝑠𝑗) + 𝑇𝑞𝑢𝑒𝑢𝑒(𝑠𝑗) + 𝑇𝑝𝑟𝑜𝑐(𝑠𝑗)                                                         (4) 

 

where 𝑇𝑐𝑜𝑚𝑚(𝑠𝑖 , 𝑠𝑗) is determined by the bandwidth 𝐵𝑠𝑖,𝑠𝑗
 and data size 𝐷𝑘 in Eq. (5). 

 

𝑇𝑐𝑜𝑚𝑚(𝑠𝑖 , 𝑠𝑗) =
𝐷𝑘

𝐵𝑠𝑖,𝑠𝑗

                                                                                    (5) 

 

The offloading decision is modeled as a constrained optimization problem using Eq. (6). 

 

min
𝑠𝑗𝜖 𝑆

            𝑇𝑡𝑜𝑡𝑎𝑙(𝑠𝑖 , 𝑠𝑗), 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐶𝑠𝑗
≥ 𝐷𝑘 ,     𝑀𝑠𝑗

≥ 𝑀𝑘 ,          𝑃𝑠𝑗
≥ 𝑃𝑘                        (6) 

 

This ensures that offloading only occurs when the selected satellite has sufficient resources to execute the task within the 

required time constraints. 

AI Model Training and Inference Performance 

A critical component of this study is the evaluation of AI inference performance under the constraints of satellite edge 

computing. The AI model considered is a convolutional neural network (CNN) deployed for real-time image classification 

of Earth observation data. The inference process involves executing matrix multiplications and activation functions within 

the available computing resources. Given an input feature map 𝑋, a convolutional layer computes the output as Eq. (7). 

 

𝑌𝑖,𝑗
(𝑙)

= 𝜎 ( ∑ ∑ 𝑊𝑚,𝑛
(𝑙)

𝑋𝑖+𝑚,𝑗+𝑛
(𝑙−1)

+ 𝑏(𝑙)

𝑁

𝑛=1

𝑀

𝑚=1

)                                                                  (7) 

 

where 𝑊𝑚,𝑛
(𝑙)

 represents the filter weights, 𝑏(𝑙) is the bias term, and 𝜎(⋅) is the activation function. The latency of each 

inference operation is calculated as Eq. (8). 

 

𝑇𝑖𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =
Σ𝑙𝐶𝑙

𝐶𝑠

                                                                                         (8) 

 

where 𝐶𝑙 represents the total floating-point operations required for each layer. The model is trained offline using federated 

learning, where updates are exchanged between satellites based on the availability of inter-satellite links. The weight update 

at iteration 𝑡 follows the stochastic gradient descent (SGD) update rule in Eq. (9).  

 

𝑊(𝑡+1) = 𝑊(𝑡) − 𝜂∇𝐿(𝑊(𝑡))                                                                         (9) 

 

where 𝜂 is the learning rate, and 𝐿(𝑊) is the loss function. The federated learning update synchronization is constrained 

by the network topology, leading to asynchronous model updates across different satellites. 

Simulation and Performance Metrics 

The proposed architecture is simulated using a custom-built framework that integrates satellite mobility models with edge 

computing resource allocation. The evaluation metrics include: 

a) Connectivity stability: Measured as the average link duration between satellites, given by Eq. (10). 

b)   

𝑇̅𝑙𝑖𝑛𝑘 =
1

|𝐸|
     ∑ 𝑇𝑙𝑖𝑛𝑘

(𝑠𝑖,𝑠𝑗)𝜖𝐸

(𝑠𝑖 , 𝑠𝑗),                                                               (10) 

where |𝐸| represents the number of active links, which integrate; 
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c) Task execution latency: Evaluated based on the total delay of task execution, considering both local processing 

and offloading scenarios. 

d) Inference accuracy vs. latency tradeoff: Analyzed by comparing the classification accuracy of AI models against 

execution time constraints imposed by the satellite environment. 

The results provide insights into the effectiveness of edge intelligence in satellite IoT networks, highlighting the tradeoffs 

between computing efficiency, communication overhead, and AI inference performance under real-world dynamic 

conditions. 

IV. RESULTS AND DISCUSSION  

To enhance the assessment of the satellite IoT's edge intelligence computing structure, we have conducted simulation studies. 

Initially, we model the coverage and connection efficacy of the satellite IoTs. Subsequently, we emulate the inference and 

training processes of the satellite IoTs edge intelligent computing structure, primarily focusing on latency. 

Satellite Coverage Performance and Iot Connectivity  

In contrast to terrestrial IoT, satellite IoT must account for high-velocity dynamic topology [18]. Satellite IoTs may be 

structured around satellite constellations, resulting in a network architecture that undergoes periodic alterations, making the 

mobility of the nodes predictable and so enhancing satellite IoTs analysis.  We examine the coverage and connection efficacy 

of satellite IoTs. We tested the link and signal efficiency of satellite IoTs using the STK 11.5 (Satellite Tool Kit) program. 

The satellite constellations are configured as a 66/6/1 Walker constellations, including 11 satellites, 6 orbital planes, with 66 

satellites in each plane.  Every satellite orbit at an altitude of 1500 kilometres, has orbit inclinations of 90°, and exhibits a 

semi-cone 50° angle as observed by sensor networks. By configuring the aforementioned settings in the STK program, we 

may get images from various angles of the whole satellite IoTs, as shown in Fig 6 and 7. 

 Fig 6 illustrates the communication link among every satellite in a practical scenario. The line (green) denotes the 

communications connection between satellites. Taking for instance a satellite connects with 4 azimuthal spacecraft, it may 

be seen that the spacecraft create a system of numerous four-sided polygons, resulting in a global network for the satellite 

Internet of Things. Fig 7 illustrates projections of communication connections among every satellite in 2D plan 

representation of the Earth. Owing to the Earth's curvature, the 2D representation of the Earth will result in the interlacing 

of communication connection projections between every satellite at the Arctic and the South Pole. The cause of this anomaly 

is that when the 3D sphere is projected onto a 2D plane, the graphical representation at the poles is distorted, however the 

communication connection stays intact. 

 
Fig 6. 3D Representation of the Satellite IoT. (A) Sat1205 Observation Points; (B) Sat140 Observation Points 

 
Fig 7. 2D Structure of Spacecraft IoT 

 

The STK link module is capable of computing the interlink data for every satellite. Using Sat1205 as a case study, we 

use STK to replicate its trajectory and examine the links connectivity of Sat1205 satellite. By documenting the link 
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connections of Sat1205, it is evident that the satellite may sustain a reliable link with adjacent satellites throughout a 24-hour 

period of satellite movement. Table 1 displays the link parameters of Sat1205 with Sat1305, Sat1206, Sat1204, and Sat1105. 

 

Table 1. Duration and Distance of Connections Between Satellites. 

Link Pair Link Duration/Day (h) Link Distance/km 

Sat1205-Sat1105 24 1446.8–4327.1 

Sat1205-Sat1204 24 4439.2 

Sat1205-Sat1206 24 4439.2 

Sat1205-Sat1305 24 1446.8–4327.1 

 

Table 1 illustrates that every satellite may maintain a connection with 4 neighboring satellites for an extended duration, 

and distance between 2 neighboring satellites in a similar orbit stays constant (Sat1205 shares a similar orbital plane as 

satellites Sat1206 and Sat1204) [19]. The distance of inter-satellite on neighboring orbit planes fluctuates occasionally. 

Subsequently, we evaluate the exposure efficacy of satellite IoTs. We modeled coverage efficacy of satellites IoTs using 

STK and assessed it with a 3°-point roughness. The proportion of global satellites IoT coverage duration and ratio at various 

latitudes throughout the day were documented. Fig 7 illustrates the range plan of the comprehensive satellite IoTs sensor. 

Upon examining the satellite IoTs sensor coverage depicted in Fig 8 and utilizing STK to compute the coverage metrics, we 

document the satellite IoTs coverage features in Table 2. Table 2 indicates that the cumulative coverage rate of the connected 

satellite IoTs is 100%, and the duration of coverage across various latitudes likewise attains 100%. 

 

 
Fig 8. Covering Features of the Whole Satellite IoTs Sensors 

 

Table 2. Latitudes Range and Cumulative Range 

% Range (Global) Coverage Latitude % Covering Duration of Various Latitudes 

99.9 −90° to 90° 99.9 

 

Network architecture of satellite IoTs exhibits periodic stable mobility. By devising an effective satellites constellation, 

the coverage efficiency and connectivity of satellite IoTs may be enhanced to a certain degree. 

Satellite IoTs edge computing structural efficiency 

We developed a model setting in Cloudsim 4.0 [20] (a cloud-based simulation system) to assess the learning and cognitive 

efficacy of the satellite-to-edge smart computing design. The neural network-based learning inference and training activities 

are delineated into several decimal-based activities, and we assess the overall computational requirements for training 

founded on existing research, as depicted in Table 3. 

 

Table 3. Varied Variables for System Inference and Training 

Model Dimension Learning 

Quantity 

Epoch Flop (1 Pass) No. of variables Overall 

Calculation 

VGG-16 224 x 224 x 3 7000 50 15.470 GFLOPS 138.38 M 5.164 PFLOPS 

ResNet-50  224 x 224 x 3 7000 50 3.870 GFLOPS 25.609 M 1.292 PFLOPS 

WRN 224 x 224 x 3 7000 50 10.935 GFLOPS 68.950 M 3.650 PFLOPS 

MobileNet 224 x 224 x 3 7000 50 0.573 GFLOPS 4.253 M 0.191 PFLOPS 

ShuffleNet  224 x 224 x 3 7000 50 0.136 GFLOPS 1.74 M 0.045 PFLOPS 

DenseNet  224 x 224 x 3 7000 50 2.834 GFLOPS 7.894 M 0.946 PFLOPS 
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We posit that inter-satellites connection throughput is 300 Mbps, whereas the satellites-to-terrestrial connection capacity 

is 600 Mbps.  Status resource of every satellite could be delineated by the characteristics in Table 4. 

 

Table 4. Resource Context of Every Satellite. 

Float value computations 5 TFLOPS (FP16) 

Architecture/OS Linux/X64 

Virtual monitor XEN 

RAM 16 GB 256-bit LPDDR4x 

RAM capacity 2133 MHz – 137 GB/s 

Disk 10T 

Power 30W 

 

Simulation encompasses propagation, queuing, transmission, and processing delays, with the propagation speeds 

equating to light speed. Consequently, the end-to-end delays may be articulated using Eq. (11).  

 

𝐷𝑝𝑟𝑜𝑐𝑒𝑠𝑠 = 𝐷𝑃 + 𝐷𝑇 + 𝐷𝐿 + 𝐷𝑄                                                                       (11) 

 

where 𝐷𝑃 represents the task’s processing delays, 𝐷𝑇  denotes the propagation delays, 𝐷𝐿  signifies information 

transmission delays, and 𝐷𝑄  indicates the queuing delays. Within the training procedure, the input dataset consists of images 

measuring 224 x 224 x 3, as indicated in Table 3. A total of 7,000 photos were utilized for training, with 50 epochs 

conducted. Output data constitutes trained parameters, and the data size corresponds to the byte size of the "No of 

parameters" variable. Unified training is referred to as individual node learning. The method of disseminated training 

involves the allocation of learning tasks from an individual node to multiple satellite nodes. The synchronisation and 

transmission of variable dataset are crucial to the disseminated training procedure. Throughout the training procedure, we 

shall replicate the training period of various simulations on both multiple and single nodes, as illustrated in Fig 9. 

 

 
Fig 9. The Link Between the Training Duration and Number of Training Nodes 

 

Fig 9 illustrates that the setting of satellite IoTs dispersed network may significantly decrease training duration of the 

computationally intensive neural system. In neural networks like MobileNet and ShuffleNet, which possess comparatively 

modest computational requirements, the variation in training duration is not readily apparent; however, the total training 

time remains within a relatively low spectrum [21]. Overall, distributed training markedly outperforms single-node unified 

training. As the node quantity escalates, the duration of training remains relatively constant. Whenever the quantity of nodes 

surpasses a specific threshold, the learning duration may not be noticeably diminished. Within the satellite IoTs ecosystem, 

the proliferation of disseminated nodes may augment communication latency. 

The reasoning process involves input data represented by a picture of dimensions 224 x 224 x 3, with each task 

characterized as image processing. The computational need for processing an image is indicated by the "Flops (One pass)" 

number in Table 3. Image pixels generated by satellite sensors may surpass the pixels inputted during the inference 

procedure. Consequently, the satellite image is segmented into many photos to serve as input for analysis. Nodes may either 

transmit data to adjacent satellites or infer locally for disseminated perception. We shall replicate the perception duration of 
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a perception activity and several inference tasks utilizing distinct inference structures. Initially, for a solitary node, the 

completion times for varying task quantities are illustrated in Fig 10. 

Fig 10 illustrates that in single node inferences, whenever the inference task volume escalates, specifically, the quantity 

of images for inference, the duration per image remains largely constant. The duration required to finalize the logic is 

measured in milliseconds. Lightweight neural systems, including ShuffleNet and MobileNet, exhibit reduced inference 

latencies. Nevertheless, the reasoning latency of the large neural system framework, like VGG16, is somewhat elevated.  

Subsequently, we may emulate the mean inference latency of a single image over various neural systems in the context of 

multi-node decentralized perception, as illustrated in Fig 11. 

 

 
Fig 10. The Link Between the Computed Amount and the Logical Time of Every Image. 

 

Fig. 11 illustrates the impact of varying nodes on inference duration for every image when the computed quantity is 

10,000. An intriguing phenomenon may be seen. As the quantity of nodes engaged in perception rises, the latency of single-

image inferences in a number of neutral neural system simulators, like VGG16, decreases. Nonetheless, in some neural 

network simulators, the latency of individual image inferences is escalating (for instance, ShuffleNet and MobileNet). Given 

the extensive distances, measured in thousands of kilometres, between satellite nodes, coupled with the relatively low 

bandwidth of inter-satellite links, the link transmission latency and propagation latency between satellite systems become 

significant. Particularly for little tasks, like reasoning processes of ShuffleNet, and MobileNet, the inference duration for 

satellite nodes is minimal [22]. If dispersed processing continues, it will inevitably augment the communications latency. 

For neural networking systems with significant computing intricacy, like VGG16, disseminated reasoning facilitates the 

acceleration of the reasoning process. 

 
Fig 11. The Correlation Between the Quantity of Nodes and the Inference Duration for Each Image. 

V. CONCLUSION 
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This research demonstrates the effectiveness of optimized AI computation offloading in satellite IoT networks through 

vehicular cloud resource allocation and edge computing strategies. By integrating distributed machine learning and advanced 

resource management, we significantly boost data processing performance, minimize latency, and enhance overall system 

scalability. The proposed framework effectively balances computational loads between satellite, edge, and vehicular nodes, 

ensuring optimal performance in remote sensing applications. Simulation results validate the superior efficiency of our 

approach, showing reduced energy consumption and improved real-time decision-making capabilities compared to 

traditional methods. Furthermore, our model enables adaptive workload distribution, leveraging dynamic task partitioning 

and intelligent scheduling to enhance network resilience and ensure uninterrupted communication. The findings highlight 

the potential of intelligent offloading techniques in transforming satellite-based IoT systems, offering a foundation for future 

advancements in autonomous networking, adaptive resource allocation, and real-time analytics in space communications.  
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