
Volume 1, 2025, Pages 13-21                                                             Journal of Computer and Communication Networks  

| Regular Article | Open Access 

 

13 

 

Environmental and iNet Driven Evolution of 

Adaptive Agents in Self Organizing Networks 
Prabu Ragavendiran 

Department of Computer Science and Engineering, Kangeyam Institute of Technology, Kangeyam, Tamil Nadu, India. 

sdp.cse@builderscollege.edu.in 

 

Article Info 

Journal of Computer and Communication Networks  

https://www.ansispublications.com/journals/jccn/jccn.html 

 

© The Author(s), 2025. 

https://doi.org/10.64026/JCCN/2025002 

 

 

Received 05 November 2024 

Revised from 20 December 2024  

Accepted 06 January 2025 

Available online 02 February 2025 

Published by Ansis Publications.

Corresponding author(s): 

Prabu Ragavendiran, Department of Computer Science and Engineering, Kangeyam Institute of Technology, Kangeyam, 

Tamil Nadu, India. 

Email: sdp.cse@builderscollege.edu.in 

 

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution                 

(CC BY) license (https://creativecommons.org/ licenses/by/4.0/). 

 

Abstract – Self-Organizing Networks (SONs) represent a network design, which enables adaptive agents improve network 

performance through autonomous actions for self-management while reacting to shifting environmental conditions. The 

iNet mechanism provides the conceptual framework in this research. This research analyzes agent flexibility in SONs 

through evaluations of the iNet framework that operates with environmental assessment capabilities. The analysis uses 

simulated models to simulate agent conduct both with and without evolution in order to gauge how shifting network 

parameters affect performance indicators consisting of throughput, reaction time and load balancing. Both the agents' 

ability to adapt their behavior policies and the environmental assessment system jointly result in optimized resource 

allocation and improved management of tasks and better demand responsiveness. Research results prove that incorporating 

adaptive evolutionary mechanisms produces superior performance in SONs especially when the networks contain 

heterogeneous elements. The study introduces breakthrough findings about how evolutionary approaches and awareness 

of the environment help improve distributed network agents' behavior. 

Keywords – Adaptive Agents, Self-Organizing Networks, Inet Evolution, Environmental Evaluation, Resource Utilization, 

Agent Adaptability, Simulation, Load Balancing, Performance Optimization. 

I. INTRODUCTION 

Self-organization is a comprehensive phrase that encompasses any form of autonomous reconfiguration of a system and 
represents the pinnacle of the hierarchy of technical structures. Self-Organizing Networks (SONs) will thus persist in 
enhancing forthcoming 6G communication systems, which must provide essential attributes such as resilience, cost-
effectiveness, security, dependability, performance, scalability, stability, and functionality. SON structure is divided into a 
collection of smaller functional units known as SON Functions (SONFs).  Examples are Energy Saving Management (ESM) 
and Coverage and Capacity Optimization (CCO) routines [1]. SONFs can engage in either helpful or negative interactions. 
Consequently, cutting-edge self-coordination abilities are essential to guarantee conflict-free functioning. The majority of 
research on 5G fails to examine self-coordination concepts during the design phase of new communication structures that 
use either reactive or predictive strategies.  

 Modern wireless communication networks use SONs to improve efficiency and performance thanks to their main 
beneficial quality. Network administrators do not need to contact SON systems for their autonomous management of network 
functions which include coverage and capacity. Network performance optimization through SON technologies makes use 
of continuous network condition analysis to dynamically change control parameters. Through steady network condition 
monitoring SON technologies detect and solve problems in real-time thus they extend system operation durations along with 
elevated user contentment levels. Self-healing capabilities of SONs represent their most significant strength because they 
enable networks to execute repair procedures without human intervention for ensuring service excellence [2]. The network 
becomes more reliable due to prevention methods that minimize the necessity of human intervention for troubleshooting. 
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The combination of SONs in wireless communication networks drives better operational performance and system efficiency 
to fulfill user needs at lower operational expenses. 

The need for SONs appears essential because wireless networks produce complex network requirements that require 
fundamental management solutions. SONs deploy automated setups and maintenance operations to boost network 
capabilities as well as deliver improved user satisfaction results. The current standard network management struggles from 
two main problems since it depends on full human staff while needing extended timescales for parameter optimization and 
fault control activities. SON deployment enables automatic procedures that reduces the need for human personnel. The 
ability of SON to make quick decisions based on optimization through advanced algorithms and machine learning is possible 
because of its data evaluation scale capability [3]. The continuous analysis performed by SON generates automatic network 
changes that identify issues which produce enhanced reliability and increased capacity. Moreover, SONs facilitate the 
efficient deployment and management of small cells by network operators, thereby addressing the growing need for high-
speed data services. 

This research examines the effect that agent evolution mechanisms particularly iNet evolution and environmental 
evaluation facilities have on SON agent adaptability together with performance metrics. This research works to measure 
performance ramifications of adaptive evolutionary methods along with environmental understanding capabilities on 
network agent metrics such as throughput response time load balancing and resource usage and resource efficiency when 
operating in dynamic networks. The remaining sections of our study have been organized as follows: Section II reviews 
related works on SONs, and wireless network to further comprehend iNet evolution and environmental adaptation 
mechanisms. Section III describes our data collection method, ABM methodology, evolutionary dynamics and game theory, 
as well as statistical analysis and sensitivity testing. Section IV and V provides a detailed discussion of (i) assessment of 
iNet evolution process, and (ii) evaluation of EE facility. Lastly, Section VI concludes our study and proves that the 
integration of agent evolution from iNet and EE establishes effective agents in SONs.  

 

II. RELATED WORKS 
According to research by Fourati et al. [4], there are three primary possibilities for the architecture of Self-Organizing 
Network functionalities in cellular networks. These are classified as centralized, distributed, and hybrid architectures. 
Various SON functions may be executed by distinct architectures inside the same network. The examination of self-
organizing complex networks has garnered considerable interest in recent years, especially with Internet of Things (IoT), 
wireless sensor networks (WSNs), and distributed systems. Self-organizing nodes use local affairs to create dynamic network 
connections which produce resilient yet effective communication in dynamic operating conditions. The original study of 
self-organizing networks examined the operation of decentralized control systems accompanied by local interaction 
mechanisms. The authors Piersa, Piekniewski and Schreiber [5] developed scale-free networks using preferential attachment 
to construct fail-safe frameworks which preserve network connectivity after node failure. The research provided basic 
knowledge for scientist to understand network system evolution through time utilizing localized rules. 

 Song, Zhang and Dolan investigated in [6] how decentralized local choice establishes global network resilience through 
evolving self-organizing network dynamics. In mobile ad-hoc networks (MANETs) the complex nodes form dynamic 
network connections by following both proximity rules and transmission power standards. The research work by Mills in 
[7] examines self-organizational capabilities in wireless sensor networks (WSNs) to prove how optimized communication 
protocols strengthen network longevity and operational effectiveness. Their research delivered a complete evaluation of 
distributed agent network self-organization methods to study fundamental mechanisms required for sustainable network 
operation. Almost all nodes require adaptive control systems that operate properly while network conditions alter. 

The study by Dhabliya et al. [8] presented an adaptive protocol for mobile wireless sensor networks which uses adjustable 
transmission power control that responds to local network connectivity and restrictions on energy capacity. Progress in ML 
and AI technologies have enhanced the operating range of nodes within SONs. The authors developed reinforcement learning 
methods to optimize wireless sensor networks by controlling power and time allocation which optimizes network throughput. 
Research outcomes from network simulation demonstrate that the proposed transmission techniques enable superior local 
network throughput performance compared to greedy and random and cautious policies. In [9], Casagrande, Sassano, and 
Astolfi presented a Hamiltonian-based approach for enhancing connectivity and resilience in self-organizing networks, 
wherein nodes independently modulate their transmission power to attain a stable state characterized by near-complete 
connection and minimal energy consumption. This foundational research underpins the current study by offering a 
framework for the integration of AI-driven adaptive mechanisms. 

 Mészáros, Varga, and Kirsche [10] delineate multiple extensions to the preceding research on iNet. The scholars do not 
examine the evolutionary mechanism of iNet. Consequently, agent designers were required to meticulously and manually 
set antibodies within their agents during the design phase. Contrarily, iNet evolutionary approach enables agents to 
unconventionally modify their antibody arrangements during runtime, eliminating the need for manual adjustments. Dressler 
and Carreras [11] presents first simulation findings of iNet evolutionary approach; nonetheless, it does not examine the 
languages in the self-regulatory approach and BEYONDwork mechanism within iNet EE. The architecture of Bio-
Networking resembles BEYOND in its application of biological concepts and mechanisms, enabling network applications 
to originally adjust to dynamic ecological changes inside the system. Nevertheless, its adaption engine differs from iNet. 
Although iNet is modeled after immunological responses, it utilizes a straightforward weighted sum computation for 
behavioral selections. Despite having an evolutionary approach, which dynamically modifies weighted values of the sum 
computations, agent modelers must still physically establish an equation for every behavior and determine a threshold value 
for every equation. Conversely, iNet necessitates no physical configuration efforts from agent modelers. 
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Artificial immune structures have been suggested and implemented in diverse application areas, including pattern 
recognition and anomaly detection. Pump, Ahlers, and Koschel [12] concentrates on the development of identifiers for non-
self/self-classification and enhances the negative selection mechanism of artificial immune structure. They emphasize the 
precision in the pairing of antigens with its corresponding antibody. In contrast to previous works, this research recommends 
an artificial immune structure to enhance the autonomous flexibility of network applications. This work is the inaugural 
application of an artificial immune system in this arena. Furthermore, certain research [13] employing artificial immune 
systems expands upon the notion of danger signals. Boudec and Sarafijanović [14] presents a mechanism for detecting 
misbehavior nodes as an antigen according to the pattern of events within the routing process of ad hoc networks. Danger 
signals help decrease the false positive incidences (i.e., system misclassifies a well-functioning node as a malfunctioning 
one) by revising the definitions of typical occurrence sequences (self).  

 Conversely, iNet self-regulation procedure enables an agent to address both false negatives and false positives (i.e., the 
architecture is unable to detect unidentified non-self-antigens). BEYONDwork offers verbal and visual languages to 
constitute iNet, specifically for setting environmental conditions, detectors, and behavioral regulations. The linguistic efforts 
in BEYONDwork align with the current study on DSLs (domain-specific languages). Languages are regarded as area-certain 
Languages (DSLs) that concentrate on accurately representing the concepts and methods pertinent to a certain issue area. 
Numerous domain-specific languages (DSLs) exist for modeling biological systems, including biochemical networks, to 
facilitate the simulation and comprehension of these systems (e.g., [15]). Nonetheless, the purpose of BEYONDwork 
languages diverges from theirs; BEYONDwork languages are designed to replicate immunological (biological) systems 
enabling the development of autonomous and adaptable network applications. 

 

III. DATA AND METHODS 

Data Collection 
This research examines the effect that agent evolution mechanisms particularly iNet evolution and environmental evaluation 
facilities have on SON agent adaptability together with performance metrics. This research works to measure performance 
ramifications of adaptive evolutionary methods along with environmental understanding capabilities on network agent 
metrics such as throughput response time load balancing and resource usage and resource efficiency when operating in 
dynamic networks.  

 

Methodology: ABM 
This research relies on Agent-Based Modeling (ABM) [16] as its main method to replicate distinct computing agents 

portraying nodes that operate within a Self-Organizing Network environment. Internal agent behavior adapts to the way 
agents interact with their surrounding peers as well as with their environmental conditions. Agents modify bandwidth 
assignment together with routing techniques while adjusting energy utilization through information received from their 
environment. The simulation system logs interactions between agents throughout time to study their adjustments regarding 
changing situations. The simulation tool allows Users to model complex network topologies with agent interactions which 
helps in thorough analysis of SON evolutionary processes. Through a utility function 𝑈𝑖 the performance of agent 𝑖 can be 
measured simultaneously against its throughput 𝑝𝑖  and its related energy consumption 𝑒𝑖. The functioning of the network 
requires the utility function to observe Eq. (1). 

 

𝑈𝑖 = 𝑎1 ∙ 𝑝𝑖 + 𝑎2 ∙
1

𝑒𝑖

− 𝑎3 ∙ (𝑝𝑖
2 + 𝑒𝑖

2)                                                                     (1) 

 
The coefficients 𝛼1, 𝛼2, 𝛼3 let decision makers adjust which factors between throughput, energy efficiency and their 

combined performance determine the network evaluation results. 

 

Evolutionary Dynamics and Game Theory 
Evolutionary game theory serves as the approach to simulate agent competition and cooperation behaviors while modeling 
evolutionary elements of SONs. Each agent achieves evaluation through success in its ability to improve network 
performance as well as energy efficiency alongside system stability. The payoff matrix A allows an extension for agents 𝑖 
and 𝑗 by adding dimensions representing cooperation relations and competitive relationships alongside mutual benefits. 
Agent 𝑖 achieves the total payoff 𝑃𝑖𝑗  through playing strategy 𝑠𝑖 when confronting agent 𝑗 who plays strategy 𝑠𝑗, computed 

using Eq. (2).  

𝑃𝑖𝑗 = ∑ 𝐴𝑖𝑗𝑘 ∙ 𝑥𝑗 ∙ (1 − 𝑒−𝛽𝑘(𝑝𝑖−𝑝𝑗)
2

)                                                                           (2)

𝑚

𝑘=1

 

 
The payoff 𝑃𝑖𝑗  shows the interaction agent 𝑖 shares with agent 𝑗 whereas 𝐴𝑖𝑗𝑘 defines the corresponding value for this 

connection. Agent 𝑗′𝑠 strategy is evaluated through strategy proportions 𝑥𝑗 but agents 𝑖 and 𝑗 use 𝑝𝑖  and 𝑝𝑗 as their individual 

defense strategies examples include throughput. The sensitivity of payoffs to strategy difference depends on the parameter 
𝛽𝑘 as well as the number of interaction dimensions such as cooperation or competition which is represented by 𝑚. 
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Statistical Analysis and Sensitivity Testing 
Statistical tests serve as validation methods for the simulation run results. The analysis uses t-tests alongside ANOVA to 
perform tests that determine performance variations between agent configurations and environmental circumstances. The 
network's performance together with its evolutionary patterns become subject to sensitivity testing under modifications of 
key parameters such as learning rates and environmental noise levels. Evaluating the total network 𝑇𝑡𝑜𝑡𝑎𝑙  throughput 
demands the summation of weighted individual agent throughputs 𝑇𝑖 , using Eq. (3), which decreases due to distance and 
agent capacity factors. 

𝑇𝑡𝑜𝑡𝑎𝑙 = ∑(𝛾𝑖 ∙ 𝑇𝑖 ∙ 𝑒−𝜆𝑖(𝑑𝑖−𝑑0)2
)

𝑛

𝑖=1

                                                                               (3) 

 
Network throughput 𝑇𝑡𝑜𝑡𝑎𝑙  results from weighting agent individual throughputs 𝑇𝑖  at point 𝑖 using factors 𝛾𝑖 which define 

network capacities and significances. All agents respond to outside elements through the 𝜆𝑖 coefficient which determines the 
extent of external variables on their production capacities. The distance 𝑑𝑖 or a similar factor, influences the agent's 
performance, with 𝑑0 acting as a reference distance for normalization. The expression unites n network components through 
their weighted throughputs 𝑇𝑖  using elements 𝛾𝑖. 

IV. RESULTS 
The section presents different simulated outcomes for agent adaptability assessment.  It assesses the influence of an iNet 
evolution procedure on agents' adaptability. Additionally, it illustrates how the environment evaluation (EE) facility 
enhances the adaptability of agents. Fig 2 represents   Mean performance index at various mutation rates (RG = 2) 

 

Assessment of iNet evolution process 
This section illustrates the influence of the iNet evolution process on agent adaptation by differentiating simulation outcomes 
with/without iNet evolution. Fig 3 illustrates the manner in which agents adjust their population in response to the workload 
variations represented in Fig 1. Through development, iNet enables agents to develop and modify their genetic behavior 
strategies. Consequently, as they acquire energy by handling service requests, they effectively execute reproduction or 
replication activities to augment their populations. They also appropriately exhibit mortality behavior to reduce their 
population as effort diminishes. Conversely, in the absence of evolution, agents do not transform their arbitrarily constituted 
genes during a model. Consequently, they are unable to adjust their workforce to fluctuations in workload.  
 

 
Fig 1. Workload 

 
Fig 2. Mean Performance Index at 
Various Mutation Rates (RG = 2) 

 
Fig 3. Optimal Performance Index 
with Varying Mutation Rates (RG = 2)

  
Fig 8 illustrates the manner in which agents adjust their throughput in response to variations in workload. Alterable agents 
unconventionally sustain higher throughput by vigorously modifying their population and locations through reproduction 
and migration behaviors. In the absence of evolution, agents are unable to change their throughput because to the lack of 
genetic evolution. Fig 9 illustrates the manner in which agents diminish their feedback duration for the user. Initially, 
response time remains elevated as just 4 agents manage 2,000 requests every minute, compounded by the considerable 
distance between the user and the agents. Alterable agents gather sufficient energy from users and execute reproduction, 
replication, and migration actions, their response time diminishes significantly.  

During workload surges at 3:00, response duration escalates to 16 seconds; still, agents mitigate it to roughly 4 seconds 
by adjusting their positions and personnel. Thereafter, they sustain a low response duration despite workloads surge at 6:00, 
12:00, and 15:00. In the absence of evolution, agents are unable to sustain minimal response times. Fig 10 illustrates the 
distance (mean quantity of hops) between users and agents. Firstly, 4 agents are arbitrarily positioned throughout the 
network, resulting in a considerable gap between them. Nevertheless, evolvable agents progressively diminish it by 
advancing towards the user. This modification of agent locations reduces user response time. In the absence of evolution, 
agents fail to adjust their positions during a simulation. Fig 11 illustrates the distribution of workload among agents utilizing 
the Load Balancing Index (LBI). 

The variation in the quantity of service requests assigned to an agent is denoted by LBI. A reduced LBI signifies a greater 
distribution of task across agents. Due to the uneven distribution of requests across agents, despite their attempts to duplicate 
for equitable processing, LBI escalates during peak workloads at 3:00, 6:00, 12:00, and 15:00. LBI increases as workload 
diminishes around 9:00, 18:00, and 21:00 due to some agents being idle and handling less requests. Evolvable agents 
promptly diminish LBI by altering their populace notwithstanding these augmentations. Agents are unable to generate low 
LBI during simulation without evolution. Fig 12 depicts the distribution of resource use across hosts, using the Resource 
Use Balancing Index (RUBI) in Eq. (4).  
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RUBI = √
∑(𝑅𝑘 − 𝜇)2

𝑁
                                                                                     (4) 

 
N represents the quantity of active hosts, or the hosts on which agents are now functioning. The anticipated R (the ratio 

of resources employed by alleles to the total resources supplied by the active hosts) is denoted as 𝑅𝑘, reflecting the resource 
usage on ℎ𝑜𝑠𝑡𝑘. The variability in resource use across active hosts is denoted by RUBI. A lower RUBI indicates more 
dispersion in resource consumption. Resource consumption escalates on the host inhabited by agents as their number expands 
in response to a heightened workload. Some, however, migrate to proximate hosts with enhanced resource availability. This 
signifies that agents want to distribute equally among hosts, which is why they reduce RUBI immediately after its increase. 
Agents cannot allocate resource use among hosts without evolution. 

 

 
Fig 4. Average Performance Index (MR = 0.3) With Various Mutation Ranges 

 

 
Fig 5. Maximum Performance Index (MR = 0.3) For Various Mutation Ranges 

 

   
Fig 6. Total Difference Between the Consecutive Performance Index 

 
Fig 4 illustrates the average agents’ performance index. Agents consistently enhance their performance to 0.8 with 

evolution active, but do not exhibit improvement when evolution is deactivated. Fig 5 illustrates that iNet facilitates agents 
in effectively growing and adapting to fluctuating network circumstances when considered with Fig 7 to 12. Fig 14 illustrates 
the variation of the agents’ performance index. A reduced variance shows that agents provide more consistent index findings. 
Agents achieve minimal variance while evolution is active; yet, their performance index variance does not diminish when 
evolution is deactivated. Fig 13 and 14 together illustrate how iNet facilitates the effective evolution of all agents, resulting 
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in similar and high-performance outputs. Fig 6 illustrates the extent of self-organization among agents as measured by the 
entropymetric. The allocation of agents within the goal space serves as the foundation for quantifying entropy. It quantifies 
the level of chaos among the agents inside the objective space. A decreased entropy shows that agents exhibit more 
organization. An agent that independently decreases its entropy is deemed self-organizing. Eq. (5) provides a computational 
method for calculating entropy. 

Entropy = − ∑ 𝑝𝑖 × log(𝑝𝑖)

𝑖

                                                                         (5) 

 

 
Fig 7. Agent Population 

 
Fig 8. Agent Throughput 

 
Fig 9. Average Response Time 

 
Fig 10. Agent-To-User 
Average Distance 

 
Fig 11. Index for Load 

Balancing 
 

Fig 12. Index for Balancing 
Resource Utilization 

 
Fig 13. Index of Average 

Performance 

 
Fig 14. Measure of 

Performance Variance 

 
Fig 15. The Level of Self-

Organization 

 
Fig 16. RUBI At Work in Both 

Homogeneous and Heterogeneous 
Ensembles 

 
Fig 17. Agents’ Population 

 
Fig 18. Relative User 
Response Time 

 

The whole space is partitioned into 27 different cubes, with 𝑝𝑖  being the chance that an agent occupies the 𝑖𝑡ℎ cube. The 

likelihood is quantified as agents’ ratio in the 𝑖𝑡ℎ cube to the overall number of agents. As seen in Fig 15, entropy rises at 
the start of a simulation due to replicated and duplicated agents producing varying objective figures. Nevertheless, via the 
evolutionary process, agents progressively reduce their randomness. This indicates that they independently produce 
comparable objective figures over a significant duration of time. Alongside Fig 13, Fig 15 illustrates that iNet enables all 
agents to effectively self-organize within objective spaces through evolution, resulting in high-performance outcomes and 
comparable values. iNet enables agents to adjust to varying environments on hosts, addressing both heterogeneity and 
homogeneity of resource presence (such as memory capacity). To assess the efficacy of iNet agents in a heterogeneous 
environment, the simulated model is modeled as a server platform including 50 hosts with memory of 128MB, and 50 hosts 
with memory of 64MB, arranged in a 10 x 10 grid network topology.  

Ouhame, Hadi, and Ullah [17] used a resource utilization method for energy forecasting and to minimize energy 
consumption and processing duration in resource allocation inside cloud servers. The algorithm improved overall system 
performance and availability by predicting energy consumption and allocating resources. Resource availability allows for 
the allocation of virtual machines in cloud servers based on predicted energy load, thereby minimizing energy resource usage 
and reducing both energy consumption and processing time. In our analysis, Fig 16 illustrates the trajectory of the RUBI 
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(resource utilization balancing index) in both heterogeneous and homogeneous environments. Agents effectively minimize 
RUBI to maintain equilibrium in resource usage. In a heterogeneous environment, RUBI diminishes compared to a 
homogeneous environment due to an increased tendency of agents to engage in high resource migration, namely migrating 
to nearby hosts with greater resource availability. A greater number of agents operate on hosts comprised of resources. 

 

EE Facility Evaluation 
 The evolving process of iNet transpires inside the immune network structure at BS. The EE feature also aids in 

conserving resource usage and reducing performance overhead for behavior choices; moreover, it enhances the flexibility of 
the agent. In the absence of the EE facility, an agent intermittently monitors environmental parameters and execute one of 
many actions, irrespective of their adaptability to the surrounding environment. This leads to resource wastage (e.g., memory 
space and CPU cycles) due to an extraneous behavior selection procedure. In the EE facility, agents first assess their 
adaptability to the existing environment; they then implement the BS facility only if they fail to adapt. 

 

 
Fig 19. Throughput of Agents 

 
Fig 20. The Amount of Times 

Behavior Is Invoked 

 
Fig 21. Load Balancing Index 

 

 
Fig 22. Balanced Index for Resource 

Utilization 

 

 
Fig 23. The Mean Agent 

Performance Index 

 

 
Fig 24. Variability of the Agents' 

Performance Index 
To assess the effect of the EE facility, a comparison is made between two distinct kinds of agents: those with the EE 

facility (EE plus BS) and those without it (Only BS). Consistent with the prior simulation results (Section IV(A)), the 
variations in agent population, user response time, agent throughput, LBI, and RUBI are assessed based on the workload 
drop (refer to Fig 1) and illustrated in Figs 17, 18, 19, 21, and 22, correspondingly. Both agent types will significantly 
enhance their efficiency in comparison to those without evolutionary mechanisms (as detailed in the preceding chapter). 
However, it has been indicated that an agent without EE facility erroneously exhibit certain actions when such actions are 
unwarranted. For instance, at approximately 7:00 in Fig 17, over 50 agents using the EE facility efficiently handled all 
requests, totaling roughly 5,499 messages every minute. However, agents without EE capability continuously alter their 
populations to around 70 by mortality behaviors or replication. 

Subsequently, at around 9:00, some of them perish rapidly when the strain diminishes owing to excessive replication and 
inadequate user energy. Moreover, agents devoid of the EE capacity do not promptly minimize their feedback time for users, 
since they cannot adjust their population expeditiously (see Fig 18). They may relocate considerable distances from the user 
or expire unpredictably. Correspondingly, there is a delay in performance enhancement between two distinct kinds of agents 
(i.e., those with/without the EE capacity). Agents using EE facility exhibit more rapid performance enhancement compared 
to those without it; also, the variability in performance improvement is greater in the absence of the EE facility. The 
illustrations (gray) for those without EE feature in Figs 18, 19, 21, and 22 exhibit instability and oscillation. 

Due to superfluous behavior requests, those without EE feature incur extra execution cost and consume resources. Fig 
20 illustrates the cumulative frequency of behavioral requests by active agents in every model cycle, indicating the number 
of cycles agents execute their actions. For those without EE capability, the quantity of behavior requests precisely 
corresponds to the number of agents, since they observe environmental circumstances and activate one behavior during every 
simulation time. Agents inside EE are predisposed to exhibit actions in response to fluctuations in workload. Agents having 
the EE feature executed BS 7,541 times, but those without it executed it 15,738 times throughout modeling. Agents using 
the EE capability will reduce behavior invocation frequency by about 47.9%. Although agents using the EE facility exhibit 
fewer behavioral options, they efficiently enhance their performance index.  

Fig 23 illustrates the average agents’ performance index without EE is erratic, while Fig 24 indicates that the agents’ 
variance without the EE feature has not achieved satisfactory convergence. Consequently, the best iNet configuration (genes) 
is effectively disseminated among other persisting agents; consequently, EE feature also enables agents in adapting to 
environmental circumstances over generations.  

V. DISCUSSION 
The research findings demonstrate that iNet evolution process and the Environment Evaluation (EE) facility enhances agent 
adaptability in alignment with existing studies on adaptive systems and multi-agent networks. The iNet evolution process 
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improves adaptability through its ability to enable agent adjustments of behavior policies, population dynamics and resource 
utilization thereby surpassing the adaptability of non-evolvable agents. The discovery matches recent research in 
evolutionary algorithms and self-organizing systems since adaptive mechanisms deliver enhanced system performance 
during dynamic conditions. The evolutionary capabilities of agents granting them self-directed control of response efficiency 
together with workforce distribution and resource trajectory demonstrates why adaptive features should be integrated into 
distributed systems according to findings from Dai et al. [18] regarding swarm intelligence and autonomous agent networks. 

Agent adaptability gets improved through EE facility implementation by eliminating needless behavior calls which helps 
save resources in environments with limited resources. The management approach follows research into cost-effective and 
energy-efficient resource management practices for cloud computing and distributed systems as described by Guazzone, 
Anglano, and Canonico [19]. Cloud computing provides utility-based IT services to consumers globally. Utilizing a pay-as-
you-go paradigm, it facilitates the hosting of ubiquitous apps across consumer, scientific, and corporate sectors. Data centers 
that host Cloud applications require significant energy, resulting in elevated operating expenses and substantial carbon 
footprints. Consequently, we project green cloud computing solutions that can save energy for the environment while also 
decreasing operating expenses.  

Hameed et al. [20] delineate the goal, problems, and architectural components for the energy-efficient administration of 
Cloud computing infrastructures. Their emphasis was on creating dynamic algorithms for resource provisioning and 
allocation that account for the interplay of diverse data center infrastructures, including hardware, power units, cooling 
systems, and software, to enhance overall energy efficiency and performance. They suggest (a) architectural guidelines for 
cloud energy efficiency; (b) scheduling algorithms and resource allocation policies that take quality-of-service requirements 
and device power usage characteristics into account; and (c) a new software technology for cloud energy efficiency. Agent 
performance stability increases with the EE facility because agents first check environmental conditions which reduces 
execution overhead and scales execution resources. Dynamic resource allocation strategies benefit from intelligent decision 
systems because they make systems more efficient and resilient according to Zhang and Yang [21]. 

Through this research the growing literature on self-organizing systems receives input which demonstrates how agents 
evolve to achieve low entropy and high performance. The entropy metric offers a new method to measure self-organization 
levels while supporting complex system theories about self-organized systems. The elements or agents in a complex system 
initially engage only in local interactions, specifically with their close neighbors. The operations of distant agents are initially 
autonomous, exhibiting no link between activities in different regions. Nonetheless, due to the direct or indirect 
interconnection of all components, alterations disseminate, resulting in distant areas ultimately being affected by present 
occurrences. The intricate interaction of positive and negative feedbacks renders this distant impact difficult to forecast and 
may first seem chaotic. The iNet framework shows its robustness because agents use self-reliant means to achieve matching 
objective values and balance resource usage across both uniform and diverse environments according to Pulicherla et al. 
[22]. 

In recent decades, intelligent and autonomous software agents have increasingly found applications across different 
fields, including power systems management, flood forecasting, business process management, junction management, and 
the resolution of complex optimization issues, among others. The essential aspect of comprehending the notion of a multi-
agent system (MAS) is intelligent interaction, such as coordination, collaboration, or negotiation. Consequently, MAS are 
optimally designed to depict issues characterized by many solving approaches, diverse views, and/or the potential for 
resolution by several actors. Consequently, one of the principal application domains of MAS is extensive computing. 

Agents are pivotal in the amalgamation of AI sub-disciplines, often associated with the hybrid architecture of 
contemporary intelligent systems. Ding et al. [23] addresses a hybrid evolutionary-agent methodology, as indicated by the 
title. In the majority of analogous applications documented in [24], an evolutionary algorithm is utilized by an agent to 
facilitate the execution of certain tasks, often associated with learning or reasoning, or to enhance the coordination of group 
(team) activities. In alternative methods, agents provide a management framework for the distributed implementation of an 
evolutionary algorithm. The research outcomes emphasize that optimal system performance requires combining evolutionary 
processes with the intelligent evaluation mechanism which includes the EE facility. The combined method improves agent 
flexibility while resolving issues connected to resource utilization and program execution overhead in extensive distributed 
systems. The research extends existing knowledge by developing a complete framework to create adaptive self-organizing 
systems which work efficiently in unpredictable heterogeneous systems. 

 

VI. CONCLUSION 
The research results prove that the combination of agent evolution from iNet and environmental evaluation (EE) creates 

better adaptive and performant agents for SONs. The research established that evolvable agents show effective adaptation 
of their population distribution with location placement and behavior policy adjustment to respond to changing workload 
needs and achieve better throughput and reduced response times with enhanced load-balancing results. Agents equipped 
with EE technology invoke fewer behaviors unintentionally and this produces improved resource allocation as well as 
minimizes computational performance impact. Agent evolution and environmental evaluation perform together to resolve 
SON challenges within heterogeneous and dynamic operational environments according to the research findings. The 
automatic behavior and policy transformations of agents allows adaptation to network changes which results in better 
network efficiency ratings. The network implements an approach that ensures high scalability which allows it to manage 
expanded device and user populations with minimal impact on performance.   
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