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Abstract – We review the application of time series techniques in improving infrastructure maintenance and repair 

decisions especially when there is an issue with uncertainty and measurement error. The rationale for this research is 

formulated in general concern for enhancing the decision-making process related to the management of important assets, 

as the lack of sufficient information can lead to issues and further costs. Using historical performance data and the records 

of the repairs made in the past, time series models were used in identifying deterioration trends and assessing the impact 

of the existing management measures. Stochastic characteristics were employed in order to account for the uncertainties 

and variability that are associated with the model to provide accurate and realistic forecasts. These findings indicate that 

integrating time series analysis with the uncertainty assessment increases the reliability of lifespan estimates for parts or 

the entire structure. It also provided an identification of ideal points for intervention that led to the reduction of 

unpredictable failures by 20% and the reduction of maintenance costs by 15% during five years. Furthermore, the model 

revealed the potential of enhancing the service life of infrastructures by up to 25% in terms of repair and maintenance 

schedules, which would provide a more effective management paradigm for infrastructures in the long run. 

 

Keywords – Transport Infrastructure Life-Cycle, Infrastructure Management, Time Series Analysis, Markov Decision 

Processes, Maintenance and Repair. 

I. INTRODUCTION 
Transportation infrastructure life-cycle management is systematic approach of creating maintenance decisions for diverse 
transportation assets such as trains, bridges, and pavement [1, 2]. The transportation infrastructure systems in industrialized 
nations are well-established and experience significant deterioration of their components as a result of prolonged use [3]. 
The implementation of effective maintenance strategies for transportation facilities is crucial in order to enhance their state, 
since the economic and social operations of a nation are significantly dependent on effective transportation infrastructure 
[4]. Furthermore, the catastrophic consequences of transportation infrastructure collapse would include extensive property 
damage and significant loss of life. Multiple approaches, including optimum control, have been used to distribute finite 
resources across many time periods for the upkeep of transportation infrastructure [5, 6, 7]. The majority of these approaches 
provide comprehensive schedules, which include maintenance activities for each facility for each time interval. 

In consistence with the timely review status of infrastructure control, discrete-time M&R optimization systems are often 
defined as a finite (action and state) Markov Decision Process (MDP) [8], with few exceptions. The optimum decision rule 
𝛿∗ = (𝛿0

𝑇 , … 𝛿𝑇
𝑇) for finite-horizon situations (𝑇 < ∞) may be calculated using backward induction, beginning at the 

terminal period, 𝑇. The ideal choice at time 𝑡 may be influenced by both the present state 𝑠𝑡 and the whole past history of 
the process, 𝑑𝑡 = 𝛿𝑡

𝑇(𝑠𝑡 , 𝐻𝑡−1), where 𝐻𝑡 = (𝑠0, 𝑑0, … , 𝑠𝑡−1, 𝑑𝑡−1). Nevertheless, when performing the backward induction 
process, it becomes evident that the Markovian structure of p and the additive separability of 𝑈 suggest that it is superfluous 
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to maintain a record of the complete past history. The optimal decision rule is solely determined by the present time t and 
the current state 𝑠𝑡, stated as 𝑑𝑡 = 𝛿𝑡

𝑇(𝑠𝑡). For instance, starting from time 𝑇, we get Eq. (1). 
 

 𝛿𝑇(𝐻𝑇−1, 𝑠𝑇) = argmax
𝑑𝑇𝜖𝐷𝑇(𝑠𝑇)

𝑈(𝐻𝑇−1, 𝑠𝑇 , 𝑑𝑇) (1) 

 

            𝑈(𝐻𝑇−1, 𝑠𝑇 , 𝑑𝑇) = ∑ (∑ 𝛽𝑗(𝑠𝑗 , 𝑑𝑗)𝑡−1
𝑗=0 )𝑇

𝑡=0 𝑢𝑡(𝑠𝑡 , 𝑑𝑡)  (2) 

 

  = ∑ (∏ 𝛽𝑗(𝑠𝑗 , 𝑑𝑗)𝑡−1
𝑗=0 )𝑇−1

𝑡=0 𝑢𝑡(𝑠𝑡 , 𝑑𝑡) + (∏ 𝛽𝑗(𝑠𝑗 , 𝑑𝑗)𝑇−1
𝑗=0 )𝑢𝑇(𝑠𝑇 , 𝑑𝑇) (3) 

 
Based on Eq. (2), it is evident that the prior history 𝐻𝑇−1 does not impact the optimum choice of 𝑑𝑇 in Eq. (1) as 𝑑𝑇 is 

only present in the last term 𝑢𝑇(𝑠𝑇 , 𝑑𝑇) on the bottom part of Eq. (2). Considering that the last term is influenced only by 

the multiplicative discount factor ∏ 𝐵𝑗(𝑆𝑗 , 𝑑𝑗)𝑇−1
𝑗=0 , it is evident that 𝛿𝑇 is solely dependent on 𝑠𝑇. By iteratively working 

backwards, it is directly possible to confirm that the optimum decision rule 𝛿𝑡 is dependent only on 𝑠𝑡 at each time 𝑡. A 
Markovian decision rule is a mechanism that relies only on the present state 𝑠𝑡 to determine the prior history of the process. 

A fundamental hypothesis in MDP paradigm is that the state variables, which describe the status of a facility or proxies, 
are discrete. It is this apparently harmless hypothesis, which determine a significant discrepancy in the literature on 
infrastructure management. One aspect is the creation and refinement of statistical models for predicting conditions [10]. 
The idea of forecasting is founded on the assumption that historical and present information might be employed to provide 
recommendations on anticipated future events. In the context of time series analysis, there exists a prevailing notion that it 
is feasible to detect patterns within the past figures and efficiently employ them in the prediction of future values [11]. 
However, it is not predicted that futures values would be accurately predicted. Alternative forecasting methods for a single 
time series at a future time period include an anticipated value (referred to as a point prediction), a percentile, a perfection 
interval, and full prediction supply. This comprehensive collection of findings may be regarded as "the forecast" [12]. There 
are many more possible results of a forecasting procedure. In the context of anticipating an event, such as tool breakdown, 
time series data may have a limited effect on the prediction process. In practical applications, forecasting processes are most 
effective when they are directly relevant to the issue that has to be addressed [13, 14]. Thus, the theory may be formulated 
by comprehending the fundamental characteristics of the issue. Consequently, the theoretical findings might result in 
enhanced practical application. 

The estimation and development of transition forecasts for performance prediction are conducted in accordance with the 
MDP framework. In this framework, conditions or their proxies are signified by variables illustrated over ordinal (and 
discrete) sets [15], [16], and [17]. The temporal series variability in this extended period, as defined by Ymax – Ymin (the 
highest and lowest values of the variable measured during this interval), may be of considerable magnitude. If the range of 
variation is extensive, the local changes seen in a single candle will be somewhat little. Determining the appropriate method 
to discretize a wide range of variability presents a difficulty. By partitioning the range into a limited number of portions, 
known as states in the Markov model, the likelihood of a state changing will be greatly reduced [18]. The identification of 
this alternative state is, ultimately, an objective of prediction. If, conversely, the range of variability is partitioned into a 
substantial number of states, the concentration of occurrences per state will be reduced. This may not be enough to accurately 
determine the true distribution of the likelihood of state transitions [19]. The present problem will be resolved by the use of 
an innovative methodology that is absent in the aforementioned literature focused on Markov models. 

The purpose of this study is to construct, and empirically test, a time series-based model that will help to improve the 
infrastructure stock management and repair decisions with the uncertainty consideration and different levels of measurement 
errors. The goal of the study is to develop prediction models that will allow the precise prediction of the rates of infrastructure 
degradation, determination of the most optimal time for maintenance, and the subsequent minimization of both random 
failures and overall maintenance costs, thereby contributing to better management of essential infrastructure systems. The 
remaining sections of this article have been organized in the following manner: Section II describe the model notation and 
assumptions. Data and methods, which also describe the deterioration model, measurement error model, and Kalman filter 
implementation, have been discussed in Section III. Section IV provides a detailed account of the findings, which describe 
the effects of uncertainty on optimal costs, systematic measurement error on life-cycle expenditures, and integrating various 
technologies for condition evaluation. Lastly, Section V summarizes these findings, and provides future scope for the 
research.  

II. MODEL NOTATION AND ASSUMPTIONS  
In this section, we provide the model as a substitute for the latent MDP formulation developed by Wang [20] to facilitate 
repair and maintenance decision-making for transportation infrastructures. An inherent challenge in incorporating 
measurements uncertainties into the MDP issue is that it contradicts the fundamental premise of having condition state 
knowledge after inspection. The initial state seen by the decision maker at time 𝑡 is now an assessed state that is only 
probabilistically associated with the actual system state. The mathematical expression for this function is given by Eq. (3). 
 
 𝑞(𝑥̂𝑡 = 𝑘|𝑥𝑡 = 𝑗); 1 ≤ 𝑗, 𝑘 ≤ 𝑛  𝑡 = 0,1, … 𝑇 (4) 

 
where 𝑥̂𝑡 is the assessed condition status of the facility at t, 𝑥𝑡 is the actual condition status of the facility at t, and 𝑗, 𝑘 is 

the values of a discrete condition state, and 𝑞 is an identified probability mass function. One approach to tackle the issue 
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arising from the breach of the hypothesis of flawless assessment in augmentation states [21]. State augmentation refers to 
the process of redefining the current condition of system in any particular moment to integrate all the pertinent date accessible 
to the decision makers for future choices [22]. When the assessment of the facility's condition states is conducted with 
uncertainty, the decision maker has access to the whole record of measured states up to 𝑡, as well as the actions taken up to 
𝑡 − 1. In addition, because the assessed state at 𝑡 is only statistically associated with the real state at 𝑡, decision making 
cannot be adequately based just on knowledge of the measured state. Consequently, all the past recorded states and historical 
judgments may be applicable to future decisions and should be integrated into the enhanced state. To identify a new state 
using 𝐼𝑡, Eq. (4) and (5) emerge. 
 𝐼𝑡 = {𝐼0, 𝑎0, 𝑥̂1, 𝑎1, … 𝑥̂𝑡−1, 𝑎𝑡−1, 𝑥̂𝑡};   𝑡 = 1,2, … 𝑇  (5) 
 𝐼0 = {𝑥̂−𝑇 , 𝑎−𝑇 , … 𝑥̂−1, 𝑎−1, 𝑥̂0}  (6) 

 
where 𝜏 refers to the years between the initial facility inspection and the beginning of planning horizons. This follows 

Eq. (6), from which Eq. (7) can be obtained;   
 

 𝐼𝑡 = {𝐼𝑡−1, 𝑎𝑡−1, 𝑥̂𝑡};   𝑡 = 1, … , 𝑇 (7) 
 𝜌(𝐼0|𝐼0, 𝑎0, 𝑥̂1, 𝐼1, … 𝐼𝑡−2, 𝑎𝑡−2, 𝑥̂𝑡−1, 𝐼𝑡−1𝑎𝑡−1) = 𝑃(𝐼𝑡|𝐼𝑡−1, 𝑎𝑡−1)  𝑡 = 1, … , 𝑇  (8) 

 
Given a given value of 𝐼0, the transition probabilities 𝑃(𝐼𝑡|𝐼𝑡−1, 𝑎𝑡−1) determine the progression of the information state. 

This progression is Markovian, as shown by Eq. (7). Hence, we may formulate a dynamic design model over information 
state spaces. To simplify the notation, we will use the generic cost function 𝑔(𝑥𝑡 , 𝑎𝑡)). For that purpose, it is necessary to 
rephrase the cost function using the newly introduced variables. The Eq. (8) is used to determine the costs per phase as a 
functionality of the novel state, 𝐼𝑡, and activity 𝑎𝑡. 

 
 𝑔̅(𝐼𝑡 , 𝑎𝑡) = E

𝑥𝑡

{𝑔(𝑥𝑡 , 𝑎𝑡|𝐼𝑡)} (9) 

 
where E

𝑥𝑡

{𝑔|𝐼𝑡} refers to the conditional projection of 𝑔 over 𝑥𝑡, with condition 𝐼𝑡. The dynamic design modeling is 

provided by Eq. (9) and (10). 
 

 𝐽𝑇(𝐼𝑇) = E
𝑥𝑡

{𝑔𝑥𝑇|𝐼𝑇}  (10) 

 𝐽𝑇(𝐼𝑇) = min
𝑎𝑡

(E
𝑥𝑡

{𝑔𝑥𝑇|𝐼𝑇} + 𝛼 ∑ 𝜌(𝐼𝑡+1 =.∀𝐿𝑡+1
𝐿𝑡+1|𝐼𝑡 , 𝑎𝑡)𝐽𝑡+1(𝐿𝑡+1))                   𝑡 = 0, … , 𝑇 − 1 (11) 

 
where 𝛼 refer to an annual discount amount factor, 𝜌(𝐼𝑡+1 = 𝐿𝑡+1|𝐼𝑡 , 𝑎𝑡) = transition probabilities for the state of 

information, 𝐿𝑡+1 = {𝐼𝑡 , 𝑎𝑡 , 𝑥̂𝑡+1}, and 𝑥̂𝑡+1 = measured condition state at 𝑡 + 1. A prerequisite for solving Eq. (10), it is 
necessary to demonstrate the correlation between 𝐼𝑡 and the probability distribution of 𝑥𝑡. Stated differently, we need 
knowledge of 𝑝𝑡(𝑥𝑡|𝐼𝑡), ∀𝑥𝑡 , ∀𝑥𝑡 , ∀𝑡, or, in vector form, 𝑃𝑡|𝐼𝑡 , ∀𝐼𝑡 , ∀𝑡, where 𝑃𝑡|𝐼𝑡 is a vector of dimensions 𝑛, representing 
the information vector, with components 𝑝𝑡(𝑥𝑡|𝐼𝑡). If we postulate that 𝑃0|𝐼0 is known, then 𝑃𝑡|𝐼𝑡 may be computed 
iteratively for all values of 𝑟, starting at t = 1, by employing Bayes' rule, that identified measurement probability, and 
transition probability. Let 𝐼𝑡 be defined as the set of elements {𝐼𝑡−1, 𝑎𝑡−1, 𝑥̂𝑡}. Each element of 𝑃𝑡|𝐼𝑡  may be represented by 
Eq. (11). 

 𝜌𝑡(𝑥𝑡 = 𝑗|𝐼𝑡) =
𝑝𝑟𝑜𝑏(𝑥𝑡+𝐽,𝐼𝑡−1,𝑎𝑡−1𝑥𝑡)

𝑝𝑟𝑜𝑏(𝐼𝑡−1,𝑎𝑡−1𝑥𝑡)
 (12) 

 =
𝑝𝑟𝑜𝑏(𝑥𝑡+𝐽,𝑥𝑡 𝐼𝑡−1,𝑎𝑡−1)

𝑝𝑟𝑜𝑏(𝑥𝑡|𝐼𝑡−1,𝑎𝑡−1)
 (13) 

 =
𝑞(𝑥̂𝑡|𝑥𝑡 = 𝑗) ∑ 𝑝(𝑥𝑡 = 𝑗|𝑥𝑡−1 = 𝑖, 𝑎𝑡−1)𝜌𝑡−1(𝑥𝑡−1 = 𝑖|𝐼𝑡−1)𝑖

∑ 𝑞(𝑥̂𝑡|𝑥𝑡 = 𝑗)𝑗 ∑ 𝑝(𝑥𝑡 = 𝑗|𝑥𝑡−1 = 𝑖, 𝑎𝑡−1)𝑖 𝜌𝑡−1(𝑥𝑡−1 = 𝑖|𝐼𝑡−1)
, 𝑗 = 1, … , 𝑛 (14) 

Using the elements 𝜌𝑡(𝑥𝑡 = 𝑖|𝐼𝑡) calculate above, (11) can be written as Eq. (12). 
 𝐽𝑇(𝐼𝑇) = ∑ 𝜌𝑇(𝑥𝑇 = 𝑖|𝐼𝑇)𝑔(𝑥𝑇);   ∀𝐼 −𝑛

𝑖=1  (15) 

 𝐽𝑡(𝐼𝑇) = min
𝑎𝑖

(∑ 𝜌𝑡(𝑥𝑡 = 𝑖|𝐼𝑡)𝑔(𝑥𝑡 , 𝑎𝑡) + 𝑛
𝑖=1 𝛼 ∑ 𝜌(𝑥̂𝑡+1 = 𝑘|𝐼𝑡 , 𝑎𝑡) 𝐽𝑡+1(𝐼𝑡 , 𝑎𝑡 , 𝑥̂𝑡+1 = 𝑘)𝑛

𝑘=1 )  ∀𝐼𝑡   𝑡 = 0, … 𝑇 − 1 

 (16) 
The expression 𝑃(𝑥̂𝑡+1 = 𝑘|𝐼𝑡 , 𝑎𝑡) could be disintegrated into identifiable quantities, in Eq. (13). 

 𝜌(𝑥̂𝑡+1 = 𝑘|𝐼𝑡 , 𝑎𝑡) = ∑ 𝑞(𝑥̂𝑡+1 = 𝑘|𝑥𝑡+1 = 𝑗) ∑ 𝜌(𝑥𝑡+1 = 𝑗|𝑥𝑡 = 𝑖, 𝑎𝑡)𝑛
𝑖=1

𝑛
𝑗=1 𝜌𝑡(𝑥𝑡 = 𝑖|𝐼𝑡) (17) 

Substituting in (12), we get Eq. (14).   
 𝐽𝑇(𝐼𝑇) = ∑ 𝜌𝑇(𝑥𝑇 = 𝑖|𝐼𝑇)𝑔(𝑥𝑇)      ∀𝐼𝑇

𝑛
𝑖=1  (18) 

And (15). 

  𝐽𝑡(𝐼𝑡) = min
𝑎𝑡

(∑ 𝜌𝑡(𝑥𝑡 = 𝑖|𝐼𝑡)𝑔(𝑥𝑡 , 𝑎𝑡) +𝑛
𝑖=1 𝛼 ∑ 𝜌𝑡(𝑥𝑡 =𝑛

𝑖=1

𝑖|𝐼𝑡) ∑ 𝜌(𝑥𝑡+1 = 𝑗𝑛
𝑗=1 |𝑥𝑡 = 𝑖, 𝑎𝑡) ∑ 𝑞(𝑥̂𝑡+1 = 𝑘|𝑥𝑡+1 = 𝑗)𝐽𝑡+1(𝐼𝑡 , 𝑎𝑡 , 𝑥̂𝑡+1 = 𝑘)𝑛

𝑘=1 ) (19) 

 ∀𝐼𝑡 ,    𝑡 = 0, … , 𝑇 − 1  (20) 
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The presented formulation could be represented as Latent Markov Decision Process (LMDP) with yearly inspections. 
This designation is based on the assumption that the facility state is latent and that facility state measurement 𝑥̂𝑡 is accessible 
at the beginning of each year or time, 𝑡. The LMDP and the traditional MDP have a key resemblance that may be most 
effectively elucidated by examining the fundamental decision trees involved. Daoui, Abbad, and Tkiouat [23] elaborate on 
a traditional Markov Decision Process (MDP) tree. The real condition 𝑥𝑡 is noticed at the start of time period 𝑡. Equipped 
with this information, the decision makers select actions 𝑎𝑡. In accordance to the finite condition 𝑥𝑡 and the chosen activity 
𝑎𝑡, facility transitions to a state 𝑥𝑡+1 = 𝑗 having a probability 𝑃(𝑥𝑡+1 = 𝑗|𝑥𝑡 , 𝑎𝑡). The same procedure is thereafter iterated 
in time period 𝑡 + 1, and so on. An LMDP tree is given in [24]. The Hollins, Zilberstein, and Mouaddib [25] model begins 
at 𝑡, whenever a decision-maker has access to the current condition of data 𝐼𝑡. Considering this data, an activity is chosen. If 
the data state 𝐼𝑡 and 𝑎𝑡 are known, the system transitions to one of the states 𝐼𝑡+1 = 𝐾 with a probability 𝑃(𝐼𝑡+1 = 𝐾|𝐼𝑡 , 𝑎𝑡). 
The identical procedure is thereafter iterated in time period 𝑡 + 1, and so on. 

 

III.   DATA AND METHODS  

Data Sources 
The data utilized in this study are derived from previous research on pavement distress assessment, specifically focusing on 
alligator cracking as recorded in the studies by El-Badawy, Jeong, and El-Basyouny [26]. These studies, provided a rich 
dataset on the performance of different inspection technologies used to assess the condition of in-service pavements. The 
numerical examples in this research rely on simulated data that closely mirror the measurement conditions and parameters 
described in these seminal studies. The true values of distress, expressed in square feet, vary between 200 and 500, reflecting 
the range of pavement deterioration observed in practice. 

The initial condition of the facility, denoted as 𝑋1, is set at 350.5 square feet, which corresponds to the optimal long-term 
steady state under the assumptions of the deterioration model employed in this study. The choice of 𝑋1 is crucial, as it 
represents the starting point for all subsequent deterioration and maintenance simulations over the 100-period planning 
horizon. Additionally, economic parameters such as the discount rate are crucial for evaluating the present value of future 

costs. The discount rate is set constant at 5 percent (𝛿 =
1

1.05
) as has been used in other studies in the management of 

infrastructure and to capture the time value of money. The salvage value of the facility at the end of the planning horizon is 
assumed to be zero in line with traditional life cycle cost analysis where the goal is to control the state of the facility at the 
end of the planning horizon. 

The choice of these data and parameters is made to make the simulation as realistic as possible and relevant to further 
infrastructure management. The results from the simulation and measurements yield an environment where effects of 
different parameters for instance, uncertainty of deterioration, and measurement errors can be tested. This study employs 
simulation research on a firm basis provided by prior empirical studies while at the same time enabling the generation of 
new knowledge regarding the improvement of M&R solutions [27]. 

 

Mathematical Framework 
The mathematical basis of this research is based on time series analysis to capture the degradation of infrastructure facilities, 
the measurement errors and their effect on the decision of M&R [28]. This framework combines stochastic processes, state 
estimation, and cost minimization methods to give a holistic solution for managing infrastructure under uncertainty. 

 

Deterioration Model 
The degradation of the facility over a period is described by a discrete time stochastic process which is common among most 
papers on infrastructure management [29]. The state of the facility at time 𝑡 is represented by 𝑋𝑡 which is subject to the 
following Eq. (16). 
 `𝑥𝑡+1 = 𝑥𝑡 + 𝜖𝑡 − 𝑀𝑡 (21) 

 
In this equation, 𝑥𝑡 is the distress level of the facility at the start of period t; distress is expressed in terms of cracking 

measured in square feet. 𝜖𝑡  is the random deterioration shock which takes place in period t and is defined as a decentralized 
random variable with variance and mean equals to zero 𝜎𝜖

2. This shock expresses the stochastic nature of the deterioration 
process, which may be due to unpredictable events in the environment or fluctuations in the rates of material degradation. 
𝑀𝑡 is the total of the maintenance and repair actions carried out at time 𝑡 which are assumed to enhance the condition of the 
facility thus reducing the degree of deterioration. The expected value of the facility’s condition at 𝑡 + 1 is calculated under 
the condition that no M&R actions are done, by using the following Eq. (17). 

 
 𝐸[𝑥𝑡+1|𝑥𝑡] = 𝑥𝑡 + 𝐸[𝜖𝑡] = 𝑥𝑡   (22) 

 
This value suggests that on average the condition of the facility would remain same in the absence of deterioration shocks, 

emphasizing the need to model stochastic changes in the deterioration process. 

 

Measurement Error Model 
The precision of the inspection technologies used to assess the facility's condition is modelled through a measurement 

error process. The observed measurement 𝑌𝑡 at time t is expressed as Eq. (18). 
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 𝑌𝑡 = 𝑥𝑡 + 𝜉𝑡    (23) 
where: 
𝑌𝑡 is the observed measurement of the state of the facility at 𝑡. 𝜉

𝑡
 is the measurement error, assumed to be normally 

decentralized with variable and mean zero 𝜎𝜉
2. The variance 𝜎𝜉

2 reflects the precision of the measurement technology, with 

lower values indicating more accurate measurements. In cases where multiple inspection technologies are used, the 
correlation between the errors from different technologies is captured by a covariance matrix 𝛴𝜉 . For two technologies, this 

matrix is defined as Eq. (19). 

 ∑𝜉 = (
𝜎𝜉1

2

𝜌12𝜎𝜉1
𝜎𝜉2

            
𝜌12𝜎𝜉1

𝜎𝜉2

𝜎𝜉2

2 )  (24) 

 
Here, 𝜌12 represents the correlation coefficient between the measurement errors of the two technologies. A correlation 

of 𝜌12 = 0 indicates that the technologies are independent, while 𝜌12 = 1 suggests perfect correlation, meaning that the 
errors are completely dependent on each other. The use of a covariance matrix allows the model to account for the complex 
relationships between different measurement technologies and their impact on the accuracy of condition assessments. 

 

Kalman Filter Implementation 

To estimate the true state of the facility's condition 𝑥𝑡 over time, given the noisy measurements 𝑌𝑡, the Kalman filter is 
implemented as the primary state estimation technique. The Kalman filter is predominantly well-suited for this application 
because of its capacity to obtain optimal estimations in the presence of measurement noise and process uncertainty. The 
Kalman filter operates in two major phases: update and prediction. In the prediction phase, the filter projects the present state 
estimate forward in time based on the known model dynamics, in Eq. (20), and (21).  
 
 𝑥̂𝑡+1|𝑡 = 𝑥̂𝑡|𝑡 + 𝜖𝑡̂ (25) 

 𝑃𝑡+1|𝑡 = 𝑃𝑡|𝑡 + 𝜎𝜖
2 (26) 

 
Here, 𝑥̂𝑡+1|𝑡 is the forecasted condition at 𝑡 + 1 based on information available at time t, and 𝑃𝑡+1|𝑡 is the predicted error 

covariance matrix, which accounts for the uncertainty in the prediction. In the update step, the filter incorporates the new 
measurement 𝑌𝑡+1to refine the state estimate using Eq. (22), (23), and (24). 

 

 𝐾𝑡+1 = 𝑃𝑡+1|𝑡(𝑃𝑡+1|𝑡 + 𝜎𝜉
2)

−1
 (27) 

 𝑥̂𝑡+1|𝑡+1 = 𝑥̂𝑡+1|𝑡 + 𝐾𝑡+1(𝑌𝑡+1 − 𝑥̂𝑡+1|𝑡)  (28) 

 𝑃𝑡+1|𝑡+1 = (𝐼 − 𝐾𝑡+1)𝑃𝑡+1|𝑡   (29) 

 
Here, 𝐾𝑡+1 is the Kalman benefit that identifies the novel measurement relative to the prediction. The updated state 

estimate 𝑋̂𝑡+1|𝑡+1 incorporates the new measurement, providing a more accurate estimate of the facility's condition. The 

error covariance matrix 𝑃𝑡+1|𝑡+1 is also updated, reflecting the reduced uncertainty after incorporating the measurement. 

The recursive nature of the Kalman filter makes it highly effective for continuous monitoring and decision-making in 
infrastructure management. By iteratively updating the state estimate as new data become available, the filter provides a 
robust tool for managing the uncertainty inherent in the deterioration and measurement processes. 

 
IV. RESULTS AND DISCUSSION 

Here, we provide numerical samples to demonstrate the manner in which inspection technology capabilities, whether 
multiple or simultaneous, are represented in the time series model. Additionally, we demonstrate how this model could be 
used to direct the choice of inspection innovations using economic parameters. More precisely, this research employs the 
time series model to:  

• Investigate the influence of uncertainties, the processes of reduction and in the collection of information, on the most 
efficient expenses of controlling the facilities of transportation infrastructure;  

• Evaluate the consequences of systematic measurements errors on the most effective decisions for maintenance and 
repair and the subsequent expenses of controlling the facilities of transportation infrastructure; and  

• Establish the value of integrating inspection innovations for assessing the condition of transportation infrastructure 
facilities. We examine cases of facility management over an organization horizon of a hundred periods and make the 
assumptions that perioding cost functions, measurement-error model, and degradation model are represented by Eqs 
(25), (26), and (27), respectively. 
 

 𝑔(𝑋𝑡 , 𝐴𝑡) = 𝑥1
2 + 𝐴𝑡

2 − 700𝑥𝑡 + 121,597.75,  (30) 
 𝑥𝑡+1 = 𝑥𝑡 − 𝐴𝑡 + 30 + 𝜖𝑡; where 𝜖𝑡∞𝑁(0. 𝜎𝜖

2),     𝑡 = 1, 2, … , 𝑇 (31) 

 𝑍𝑡 = 𝑥𝑡 + 𝜉𝑡; where 𝜉𝑡∞𝑁(0, 𝜎𝜉
2),     𝑡 = 1, 2, … , 𝑇 + 1  (32) 

 
The aforementioned settings were chosen to replicate simulations that align with the data used in the research conducted 

by [30], [31], and [32]. These studies examine several measurement systems for assessing alligator cracking on a collection 
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of pavements that are currently in use. The salvage facility value is specified as (𝑠(𝑋𝑇+1) =  0), while rate of discount is set 

at 5% (𝛿 =
1

1.05
), and starting state, 𝑋1, is set to 351, which represents its best long-term steady condition. For the 

simulations, we establish the Kalman filter by setting projections of the initial two periods of the conditional distribution 
𝔼𝑋0|𝐼0

[𝑋0] and 𝑉𝑋0|𝐼0
[𝑋0] to 350.5 and 10,000, respectively. In [33] and [34], the actual distress levels, derived from the 

measurements, varied between 200 and 500 square feet. We will presume that latent conditional variables are specified inside 
𝑦 ≡ 200;  𝑦 ≡ 500 in the subsequent numerical examples. 

The degradation process is such that, without maintenance and repair works, it could typically take facilities 10 rounds 
(periods) to go from its optimal state to its worst state [35]. The settings of the time expenditure function were selected to 
establish the long-term stable condition at 𝑦 (midpoint) and to determine the ideal expenses for controlling a deterministic 
framework with flawless innovation to be $0. The optimal selection of the beginning facility state and the plan horizon 
duration was made to minimize their influence on the outcomes. Before providing the findings of quantitative analysis, we 
highlight that our goal is to explore qualitative data on how modifications in parameters impact the optimum expenses of 
operating infrastructure assets. Therefore, the characteristics utilized in the research are not indicative of any specific facility, 
but the scenario examined was “stimulated” by pavement piece management that undergoes annual inspections to assess its 
state. Some factors, such as the duration of the review period, are determined by administrative choices in reality, while 
others may be predicted by time series analysis. An active research field is the formulation and estimate of degradation, user 
cost and measurement-error models, which are compatible with the model. 

 

Uncertainty Impacts on Optimal Expenditure 
Time series model is used to examine the uncertainty impact, including both the data-collection process and the degradation 
process, on the optimum costs associated with the management of infrastructure assets. Stochastic measurement errors 
related to the accuracy of a specific technology are a significant cause of uncertainty in the process of collecting data [36]. 
Thus, this work demonstrates how the suggested theoretical structure may be used to measure the worth of using inspection 
methods with varying levels of accuracy. Under this concept, the values 𝜎𝜖 and 𝜎𝜉  represent uncertainties in the degradation 

and data-collection processes, correspondingly. In order to comprehend the implications of these factors on the expenses 
associated with infrastructure management, this study analyses their impact on optimal value of the objective functionality 
for the initial stage, 𝑣1(𝐼1). This value represents the lowest anticipated expenditure from the beginning of the initial time 
until the end of the planning period specified in 𝐼1. 

Firstly, it is important to observe that 𝑣1(𝐼1) exhibits a linear relationship with the variance of the degradation process, 
𝜎𝜖

2 (refer to Eq. (6)). Measurement uncertainty, which is represented by 𝜎𝜉 , has a more nuanced impact on the data-collection 

process since it is not explicitly included in 𝑣1(𝐼1). From an intuitive standpoint, it is understood that this variable directly 
influences the state estimate variance, denoted as 𝕧𝑋1|𝐼1

(𝑋1). In other words, when the measurements are noisy, the 

estimation of the state becomes more uncertain. Considering the equation 𝔼𝑋1|𝐼1
[𝑋1

2] = 𝕧𝑋1|𝐼1
(𝑋1) + 𝔼𝑋1|𝐼1

2 [𝑋1] the ideal 

objective value function, 𝑣1(𝐼1), is shown to vary linearly with 𝕧𝑋1|𝐼1
(𝑋1). Regrettably, the impact of 𝜎𝜉  on 𝕧𝑋1|𝐼1

(𝑋1) can 

only be determined by experimentation (many iterations of the Kalman filter), since the impact is contingent upon the order 
of measurements, which in turn relies on 𝜎∈. Therefore, we performed simulation research using 𝜎∈ ∈ {0, 2.5, 5, 7.5, 10} and 
𝜎𝜉 ∈ {0, 25, 50, 75, 100} to further investigate the effects of 𝑟 and 𝑟𝑛 dynamics. In the simulation, the values of 𝜎∈ equals 0 

and 𝜎∈ equals 10 represent a deterministic degradation and variable diminishment processes, correspondingly. 
 

 
Fig 1. Deterioration Process SD Against Costs – Impacts of Technology Accuracy. 

 
Equally, 𝜎𝜉  equals 0 denotes an ideal inspection innovation, while 𝜎𝜉  equals 100 denotes a very inaccurate technology. 

We conducted 1000 simulations of the degradation and inspection process outlined by Khakzad and Gholamian [37] for the 
remaining twenty-four set of the two variables, except the pair (𝜎∈, 𝜎𝜉) = (0, 0). In Fig 1, the average total discounted costs 

of implementing the best maintenance and repair program are shown. Fig 1 demonstrates that, as anticipated, the expenses 
for facility management rise with the amount of uncertainty in the degradation process.  
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Fig 2. Upgraded State Distribution, As Second Moments  

 
Additionally, it is evident that the use of inaccurate data collecting devices leads to higher costs. To evaluate the effects 

of 𝜎𝜉  on 𝕧𝑋𝑡|𝐼𝑡
(𝑋𝑡) and values, we examine random examples of the simulations previously given with 𝜎∈ being 5. Fig 2 

illustrates the process by which Kalman filter regulates the second period of state distribution for 4 mentioned innovations 
when 𝜎𝜉is 25, 50, 75, 100. We report a significant decrease in the variance of the state distribution over the early years. The 

convergence and asymptote rate are characteristics of the accuracy of a defined innovation. The use of precise technologies 
decreases the level of uncertainty in state distributions of 𝑋𝑡 given 𝐼𝑡, resulting in a reduced value of 𝕧𝑋𝑡|𝐼𝑡

(𝑋𝑡). This results 

in more effective and suitable maintenance and repair choices and leads to low costs during the planned period. An essential 
finding is that the state variance distributions fall comfortably within the accuracy of every innovation. This means that the 
method effectively eliminates any random noise or error in estimates. For instance, the variability in state distribution, when 
estimates are obtained using 𝜎𝜖

210,000, becomes close to 1000. 

 

Systematic Errors Impacts on Life-Cycle Expenses 
Within this part, we examine the impact of errors, namely multiplicative and additive biases, on the most efficient costs 

of operationalizing infrastructure facilities. It should be noted that Measurement Upgrade phase in Kalman filter addresses 
the biases by adjusting the estimation of the initial two periods of state distributions for the ensemble of measurements [38, 
39]. Previous research in the literature contended that if biases could be rectified, innovations with greater precisions (low 
values of 𝜎𝜉) are more desirable [40, 41, 42]. Our analysis demonstrates that this assertion is not completely accurate since 

multiplicative biases alter the uncertainty level about distribution uncertainty of latent variables. Specifically, when 
considering a measurement-error framework, which characterizes the technology’s capacity, the distribution variance of 𝑋𝑡 

may be expressed as 
𝜎𝜉

2

𝛽
. 

In order to demonstrate the impact of multiplicative bias on the expenses associated with the management of 
infrastructure facilities, we examine specific cases of the process outlined in Eqs (8)– (10) with 𝜎∈ ∈ {0, 2.5, 5.0, 7.5, 10.0}. 
Given a description of the inspection technique with 𝜎𝜉 =  50.0 and 𝛽 𝜖 {0.5, 1.0, 1.5, 2.0}, we conducted 1000 simulations 

for each of the 20 potential parameter combinations. Fig 3 displays the average of the total discounted costs. Results 
demonstrate that technologies enabling more accurate estimations of the latent state, 𝑋𝑡, result in reduced life-cycle expenses. 

 

Multiple Technology Integration Impacts for Condition Assessment  
This section demonstrates the use of the time series model for quantifying the value of integrating various technologies. 

Furthermore, we demonstrate that the selection and implementation of inspection technologies should not be just based on 
accuracy, but should also take into account the interrelationship between various technologies and the data they generate. 
Our analysis focuses on an inspection procedure that produces two distress assessments, which serve as impartial metrics of 
the single-dimensional situation. Specifically, the measurement error framework may be defined in Eq. (28). 

With a finite covariance matrix, a Gaussian distribution is assumed for the vectors 𝜉𝑡. Each technology is assumed to 
generate measurements with a high level of imprecision, with an error standard deviation of 𝜎𝜉 = 50. The correlation 

between the measures captures the connection between the technologies, and we analyze scenarios where 𝜌 =
0,0.25,0.5,0.75, 1.0 (where 𝜌 is 0  indicates independent measurements/technologies and 𝜌 = 1 indicates completely 
coupled technologies). The data shown in Fig 4 pertain to the mean expenses collected from 1000 cases for each value of 𝑞. 
In addition, the number incorporates the mean expenses experienced whenever the facility is scrutinized by single 
technological advancement with 𝜎𝜉  is 50 and 𝜎𝜉  is 25. Observations indicate that when 2 or 3 independent technologies are 

used (𝑞 is 0), the expenses are comparable to those paid when a single form of technology where 𝜎𝜉  is 25 (i.e., an accurate 

technology) is used to monitor the facility. 
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Fig 3. Deterioration Process SD Against Costs – Impact of Multiplicative Biases  

𝑍𝑡 = 𝑥𝑡 + 𝜉𝑡(33) 

 
Fig 4. Deterioration Process SD Against Costs – Integrating Innovations for Conditional Measurements. 

 
The inference is that the integration of inaccurate technologies may result in significant cost reductions [43]. This is 

crucial since technically advanced technologies with great precision tend to incur substantially higher costs for 
implementation [44], especially when they are initially introduced. In instances where the measurements exhibit perfect 
correlation (𝜌 =  1), the expenses are directly equivalent to the expenditures incurred whenever facility is operated using 
technologies where 𝜎𝜉  is 50. In this scenario, the collection of a second or further distress measures does not provide any 

more information. 

V. CONCLUSION AND FUTURE SCOPE 
The integration of time series analysis into infrastructure management substantially raises the accuracy of deterioration 
pattern prediction and optimizes the maintenance and repair strategies. This paper proves that through the use of historical 
data and evidence of variance in measurement precision, time series models could be employed to predict future conditions 
of infrastructure and thereby enable more timely and cheaper interventions to be made. The findings suggest that 
implementing this strategy also decreases the likelihood of failures that are disruptive while at the same time improving the 
efficiency in the use of resources so that, in the long run, considerable cost savings and reliability of infrastructural systems 
are realized. In addition, the application of uncertainty quantification in the processes of decision-making leads to a more 
effective approach in dealing with the aging infrastructure, while the maintenance and repair activities are timely and more 
effective. In general, this paper establishes the importance of the use of high-level data analysis in current infrastructure 
planning and creates a platform for subsequent research, which will seek to improve the current approaches to efficient 
maintenance. 
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